Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpinv.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
|
grpinv.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
4 |
1 2 3
|
grpoinvval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
5 |
1 2
|
grpoinveu |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
6 |
|
riotacl2 |
⊢ ( ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } ) |
8 |
4 7
|
eqeltrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } ) |
9 |
|
simpl |
⊢ ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
10 |
9
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
11 |
10
|
a1i |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
12 |
1 2
|
grpoidinv2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
13 |
12
|
simprd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) |
14 |
11 13 5
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ∧ ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ) |
15 |
|
reupick2 |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ∧ ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
16 |
14 15
|
sylan |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
17 |
16
|
rabbidva |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑦 𝐺 𝐴 ) = 𝑈 } = { 𝑦 ∈ 𝑋 ∣ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) } ) |
18 |
8 17
|
eleqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) } ) |
19 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( 𝑦 𝐺 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) ) |
21 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( ( 𝐴 𝐺 𝑦 ) = 𝑈 ↔ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝐴 ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ↔ ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) ) |
24 |
23
|
elrab |
⊢ ( ( 𝑁 ‘ 𝐴 ) ∈ { 𝑦 ∈ 𝑋 ∣ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) } ↔ ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) ) |
25 |
18 24
|
sylib |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) ) |
26 |
25
|
simprd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |