| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvcl.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpinvcl.2 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 4 | 1 3 2 | grpoinvval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  ( GId ‘ 𝐺 ) ) ) | 
						
							| 5 | 1 3 | grpoinveu | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 6 |  | riotacl | ⊢ ( ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  ( GId ‘ 𝐺 )  →  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  ( GId ‘ 𝐺 ) )  ∈  𝑋 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  ( GId ‘ 𝐺 ) )  ∈  𝑋 ) | 
						
							| 8 | 4 7 | eqeltrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) |