Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvcl.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpinvcl.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
4 |
1 3 2
|
grpoinvval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ) |
5 |
1 3
|
grpoinveu |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
6 |
|
riotacl |
⊢ ( ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ∈ 𝑋 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ∈ 𝑋 ) |
8 |
4 7
|
eqeltrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |