Step |
Hyp |
Ref |
Expression |
1 |
|
grpdiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpdiv.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
3 |
|
grpdiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
4 |
1 2 3
|
grpodivval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) |
5 |
4
|
fveq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) ) |
6 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
8 |
1 2
|
grpoinvop |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
9 |
7 8
|
syld3an3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
10 |
1 2
|
grpo2inv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) = 𝐵 ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) = 𝐵 ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
13 |
1 2 3
|
grpodivval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐵 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
14 |
13
|
3com23 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐵 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
15 |
12 14
|
eqtr4d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐷 𝐴 ) ) |
16 |
5 9 15
|
3eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝐵 𝐷 𝐴 ) ) |