Metamath Proof Explorer


Theorem grpoinvdiv

Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = ( inv ‘ 𝐺 )
grpdiv.3 𝐷 = ( /𝑔𝐺 )
Assertion grpoinvdiv ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝐵 𝐷 𝐴 ) )

Proof

Step Hyp Ref Expression
1 grpdiv.1 𝑋 = ran 𝐺
2 grpdiv.2 𝑁 = ( inv ‘ 𝐺 )
3 grpdiv.3 𝐷 = ( /𝑔𝐺 )
4 1 2 3 grpodivval ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝑁𝐵 ) ) )
5 4 fveq2d ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁𝐵 ) ) ) )
6 1 2 grpoinvcl ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋 ) → ( 𝑁𝐵 ) ∈ 𝑋 )
7 6 3adant2 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁𝐵 ) ∈ 𝑋 )
8 1 2 grpoinvop ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ ( 𝑁𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝑁𝐵 ) ) 𝐺 ( 𝑁𝐴 ) ) )
9 7 8 syld3an3 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( 𝑁𝐵 ) ) ) = ( ( 𝑁 ‘ ( 𝑁𝐵 ) ) 𝐺 ( 𝑁𝐴 ) ) )
10 1 2 grpo2inv ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋 ) → ( 𝑁 ‘ ( 𝑁𝐵 ) ) = 𝐵 )
11 10 3adant2 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝑁𝐵 ) ) = 𝐵 )
12 11 oveq1d ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁 ‘ ( 𝑁𝐵 ) ) 𝐺 ( 𝑁𝐴 ) ) = ( 𝐵 𝐺 ( 𝑁𝐴 ) ) )
13 1 2 3 grpodivval ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐴𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐵 𝐺 ( 𝑁𝐴 ) ) )
14 13 3com23 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐵 𝐺 ( 𝑁𝐴 ) ) )
15 12 14 eqtr4d ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁 ‘ ( 𝑁𝐵 ) ) 𝐺 ( 𝑁𝐴 ) ) = ( 𝐵 𝐷 𝐴 ) )
16 5 9 15 3eqtrd ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐷 𝐵 ) ) = ( 𝐵 𝐷 𝐴 ) )