Step |
Hyp |
Ref |
Expression |
1 |
|
grpoinveu.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpoinveu.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
1 2
|
grpoidinv2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) ) |
4 |
|
simpl |
⊢ ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
6 |
5
|
adantl |
⊢ ( ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
7 |
3 6
|
syl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |
8 |
|
eqtr3 |
⊢ ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → ( 𝑦 𝐺 𝐴 ) = ( 𝑧 𝐺 𝐴 ) ) |
9 |
1
|
grporcan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑦 𝐺 𝐴 ) = ( 𝑧 𝐺 𝐴 ) ↔ 𝑦 = 𝑧 ) ) |
10 |
8 9
|
syl5ib |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) |
11 |
10
|
3exp2 |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑦 ∈ 𝑋 → ( 𝑧 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) ) ) ) |
12 |
11
|
com24 |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝑧 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) ) ) ) |
13 |
12
|
imp41 |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) |
14 |
13
|
an32s |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) → 𝑦 = 𝑧 ) ) |
15 |
14
|
expd |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
16 |
15
|
ralrimdva |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
17 |
16
|
ancld |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) ) |
18 |
17
|
reximdva |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) ) |
19 |
7 18
|
mpd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐺 𝐴 ) = ( 𝑧 𝐺 𝐴 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ( 𝑧 𝐺 𝐴 ) = 𝑈 ) ) |
22 |
21
|
reu8 |
⊢ ( ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ∀ 𝑧 ∈ 𝑋 ( ( 𝑧 𝐺 𝐴 ) = 𝑈 → 𝑦 = 𝑧 ) ) ) |
23 |
19 22
|
sylibr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) |