| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpasscan1.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpasscan1.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
| 3 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ∈ V |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) |
| 5 |
3 4
|
fnmpti |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) Fn 𝑋 |
| 6 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
| 7 |
1 6 2
|
grpoinvfval |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) ) |
| 8 |
7
|
fneq1d |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑁 Fn 𝑋 ↔ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) Fn 𝑋 ) ) |
| 9 |
5 8
|
mpbiri |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 Fn 𝑋 ) |
| 10 |
|
fnrnfv |
⊢ ( 𝑁 Fn 𝑋 → ran 𝑁 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) } ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐺 ∈ GrpOp → ran 𝑁 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) } ) |
| 12 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑦 ) ∈ 𝑋 ) |
| 13 |
1 2
|
grpo2inv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) = 𝑦 ) |
| 14 |
13
|
eqcomd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → 𝑦 = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑁 ‘ 𝑦 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) |
| 16 |
15
|
rspceeqv |
⊢ ( ( ( 𝑁 ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑦 = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) |
| 17 |
12 14 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) |
| 18 |
17
|
ex |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) → 𝑦 = ( 𝑁 ‘ 𝑥 ) ) |
| 20 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑥 ) ∈ 𝑋 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝑥 ) ∈ 𝑋 ) |
| 22 |
19 21
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) → 𝑦 ∈ 𝑋 ) |
| 23 |
22
|
rexlimdva2 |
⊢ ( 𝐺 ∈ GrpOp → ( ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) → 𝑦 ∈ 𝑋 ) ) |
| 24 |
18 23
|
impbid |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑦 ∈ 𝑋 ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) ) |
| 25 |
24
|
eqabdv |
⊢ ( 𝐺 ∈ GrpOp → 𝑋 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) } ) |
| 26 |
11 25
|
eqtr4d |
⊢ ( 𝐺 ∈ GrpOp → ran 𝑁 = 𝑋 ) |
| 27 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) |
| 28 |
1 2
|
grpo2inv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = 𝑥 ) |
| 29 |
28 13
|
eqeqan12d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 30 |
29
|
anandis |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 31 |
27 30
|
imbitrid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 32 |
31
|
ralrimivva |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 33 |
|
dff1o6 |
⊢ ( 𝑁 : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 34 |
9 26 32 33
|
syl3anbrc |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 : 𝑋 –1-1-onto→ 𝑋 ) |