Step |
Hyp |
Ref |
Expression |
1 |
|
grpasscan1.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpasscan1.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
3 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ∈ V |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) |
5 |
3 4
|
fnmpti |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) Fn 𝑋 |
6 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
7 |
1 6 2
|
grpoinvfval |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) ) |
8 |
7
|
fneq1d |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑁 Fn 𝑋 ↔ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = ( GId ‘ 𝐺 ) ) ) Fn 𝑋 ) ) |
9 |
5 8
|
mpbiri |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 Fn 𝑋 ) |
10 |
|
fnrnfv |
⊢ ( 𝑁 Fn 𝑋 → ran 𝑁 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) } ) |
11 |
9 10
|
syl |
⊢ ( 𝐺 ∈ GrpOp → ran 𝑁 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) } ) |
12 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑦 ) ∈ 𝑋 ) |
13 |
1 2
|
grpo2inv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) = 𝑦 ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → 𝑦 = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑁 ‘ 𝑦 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) |
16 |
15
|
rspceeqv |
⊢ ( ( ( 𝑁 ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑦 = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) |
17 |
12 14 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) |
18 |
17
|
ex |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑦 ∈ 𝑋 → ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) ) |
19 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) → 𝑦 = ( 𝑁 ‘ 𝑥 ) ) |
20 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑥 ) ∈ 𝑋 ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝑥 ) ∈ 𝑋 ) |
22 |
19 21
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 = ( 𝑁 ‘ 𝑥 ) ) → 𝑦 ∈ 𝑋 ) |
23 |
22
|
rexlimdva2 |
⊢ ( 𝐺 ∈ GrpOp → ( ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) → 𝑦 ∈ 𝑋 ) ) |
24 |
18 23
|
impbid |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑦 ∈ 𝑋 ↔ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) ) ) |
25 |
24
|
abbi2dv |
⊢ ( 𝐺 ∈ GrpOp → 𝑋 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = ( 𝑁 ‘ 𝑥 ) } ) |
26 |
11 25
|
eqtr4d |
⊢ ( 𝐺 ∈ GrpOp → ran 𝑁 = 𝑋 ) |
27 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ) |
28 |
1 2
|
grpo2inv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = 𝑥 ) |
29 |
28 13
|
eqeqan12d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
30 |
29
|
anandis |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
31 |
27 30
|
syl5ib |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
32 |
31
|
ralrimivva |
⊢ ( 𝐺 ∈ GrpOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
33 |
|
dff1o6 |
⊢ ( 𝑁 : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
34 |
9 26 32 33
|
syl3anbrc |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 : 𝑋 –1-1-onto→ 𝑋 ) |