| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvfval.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpinvfval.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | grpinvfval.3 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 4 |  | rnexg | ⊢ ( 𝐺  ∈  GrpOp  →  ran  𝐺  ∈  V ) | 
						
							| 5 | 1 4 | eqeltrid | ⊢ ( 𝐺  ∈  GrpOp  →  𝑋  ∈  V ) | 
						
							| 6 |  | mptexg | ⊢ ( 𝑋  ∈  V  →  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) )  ∈  V ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) )  ∈  V ) | 
						
							| 8 |  | rneq | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  ran  𝐺 ) | 
						
							| 9 | 8 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  𝑋 ) | 
						
							| 10 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦 𝑔 𝑥 )  =  ( 𝑦 𝐺 𝑥 ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( GId ‘ 𝑔 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 12 | 11 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( GId ‘ 𝑔 )  =  𝑈 ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑦 𝑔 𝑥 )  =  ( GId ‘ 𝑔 )  ↔  ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) | 
						
							| 14 | 9 13 | riotaeqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ℩ 𝑦  ∈  ran  𝑔 ( 𝑦 𝑔 𝑥 )  =  ( GId ‘ 𝑔 ) )  =  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) | 
						
							| 15 | 9 14 | mpteq12dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  ∈  ran  𝑔  ↦  ( ℩ 𝑦  ∈  ran  𝑔 ( 𝑦 𝑔 𝑥 )  =  ( GId ‘ 𝑔 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ) | 
						
							| 16 |  | df-ginv | ⊢ inv  =  ( 𝑔  ∈  GrpOp  ↦  ( 𝑥  ∈  ran  𝑔  ↦  ( ℩ 𝑦  ∈  ran  𝑔 ( 𝑦 𝑔 𝑥 )  =  ( GId ‘ 𝑔 ) ) ) ) | 
						
							| 17 | 15 16 | fvmptg | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) )  ∈  V )  →  ( inv ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ) | 
						
							| 18 | 7 17 | mpdan | ⊢ ( 𝐺  ∈  GrpOp  →  ( inv ‘ 𝐺 )  =  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ) | 
						
							| 19 | 3 18 | eqtrid | ⊢ ( 𝐺  ∈  GrpOp  →  𝑁  =  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ) |