Metamath Proof Explorer


Theorem grpoinvfval

Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = ( GId ‘ 𝐺 )
grpinvfval.3 𝑁 = ( inv ‘ 𝐺 )
Assertion grpoinvfval ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 grpinvfval.1 𝑋 = ran 𝐺
2 grpinvfval.2 𝑈 = ( GId ‘ 𝐺 )
3 grpinvfval.3 𝑁 = ( inv ‘ 𝐺 )
4 rnexg ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V )
5 1 4 eqeltrid ( 𝐺 ∈ GrpOp → 𝑋 ∈ V )
6 mptexg ( 𝑋 ∈ V → ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V )
7 5 6 syl ( 𝐺 ∈ GrpOp → ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V )
8 rneq ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 )
9 8 1 eqtr4di ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 )
10 oveq ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) )
11 fveq2 ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) )
12 11 2 eqtr4di ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = 𝑈 )
13 10 12 eqeq12d ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) )
14 9 13 riotaeqbidv ( 𝑔 = 𝐺 → ( 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) = ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) )
15 9 14 mpteq12dv ( 𝑔 = 𝐺 → ( 𝑥 ∈ ran 𝑔 ↦ ( 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) )
16 df-ginv inv = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) )
17 15 16 fvmptg ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) → ( inv ‘ 𝐺 ) = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) )
18 7 17 mpdan ( 𝐺 ∈ GrpOp → ( inv ‘ 𝐺 ) = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) )
19 3 18 syl5eq ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) )