Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvfval.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpinvfval.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
|
grpinvfval.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
4 |
|
rnexg |
⊢ ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V ) |
5 |
1 4
|
eqeltrid |
⊢ ( 𝐺 ∈ GrpOp → 𝑋 ∈ V ) |
6 |
|
mptexg |
⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) |
7 |
5 6
|
syl |
⊢ ( 𝐺 ∈ GrpOp → ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) |
8 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
10 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = 𝑈 ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ↔ ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
14 |
9 13
|
riotaeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) |
15 |
9 14
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
16 |
|
df-ginv |
⊢ inv = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 ↦ ( ℩ 𝑦 ∈ ran 𝑔 ( 𝑦 𝑔 𝑥 ) = ( GId ‘ 𝑔 ) ) ) ) |
17 |
15 16
|
fvmptg |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ∈ V ) → ( inv ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
18 |
7 17
|
mpdan |
⊢ ( 𝐺 ∈ GrpOp → ( inv ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |
19 |
3 18
|
syl5eq |
⊢ ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ) |