Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpinv.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
|
grpinv.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
4 |
|
oveq2 |
⊢ ( ( 𝑁 ‘ 𝐴 ) = 𝐵 → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐴 𝐺 𝐵 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐴 𝐺 𝐵 ) ) |
6 |
1 2 3
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
9 |
5 8
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐴 𝐺 𝐵 ) = 𝑈 ) |
10 |
|
oveq2 |
⊢ ( ( 𝐴 𝐺 𝐵 ) = 𝑈 → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) ) |
12 |
1 2 3
|
grpolinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( 𝑈 𝐺 𝐵 ) ) |
15 |
1 3
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
16 |
15
|
adantrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
17 |
|
simprl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
18 |
|
simprr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
19 |
16 17 18
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
20 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
21 |
19 20
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
22 |
21
|
3impb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
23 |
14 22
|
eqtr3d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) ) |
24 |
1 2
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
25 |
24
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 𝐵 ) = 𝐵 ) |
26 |
23 25
|
eqtr3d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = 𝐵 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 ( 𝐴 𝐺 𝐵 ) ) = 𝐵 ) |
28 |
1 2
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
29 |
15 28
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
30 |
29
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝑈 ) = ( 𝑁 ‘ 𝐴 ) ) |
32 |
11 27 31
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) → ( 𝑁 ‘ 𝐴 ) = 𝐵 ) |
33 |
9 32
|
impbida |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 𝐵 ↔ ( 𝐴 𝐺 𝐵 ) = 𝑈 ) ) |