| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpinv.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | grpinv.3 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 4 |  | oveq1 | ⊢ ( ( 𝑁 ‘ 𝐴 )  =  𝐵  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑁 ‘ 𝐴 )  =  𝐵 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 6 | 1 2 3 | grpolinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑁 ‘ 𝐴 )  =  𝐵 )  →  ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 9 | 5 8 | eqtr3d | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑁 ‘ 𝐴 )  =  𝐵 )  →  ( 𝐵 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 10 | 1 3 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 11 | 1 2 | grpolid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 )  →  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐵 𝐺 𝐴 )  =  𝑈 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( ( 𝐵 𝐺 𝐴 )  =  𝑈  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐵 𝐺 𝐴 )  =  𝑈 )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 19 |  | simprl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 20 | 10 | adantrr | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 21 | 18 19 20 | 3jca | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) ) | 
						
							| 22 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝑁 ‘ 𝐴 )  ∈  𝑋 ) )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) | 
						
							| 23 | 21 22 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 23 | 3impb | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 1 2 3 | grporinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) )  =  ( 𝐵 𝐺 𝑈 ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) )  =  ( 𝐵 𝐺 𝑈 ) ) | 
						
							| 28 | 1 2 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐺 𝑈 )  =  𝐵 ) | 
						
							| 29 | 28 | 3adant2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐺 𝑈 )  =  𝐵 ) | 
						
							| 30 | 24 27 29 | 3eqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝐵 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐵 𝐺 𝐴 )  =  𝑈 )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝐵 ) | 
						
							| 32 | 15 17 31 | 3eqtr2d | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐵 𝐺 𝐴 )  =  𝑈 )  →  ( 𝑁 ‘ 𝐴 )  =  𝐵 ) | 
						
							| 33 | 9 32 | impbida | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 )  =  𝐵  ↔  ( 𝐵 𝐺 𝐴 )  =  𝑈 ) ) |