Step |
Hyp |
Ref |
Expression |
1 |
|
grpasscan1.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpasscan1.2 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
3 |
|
simp1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
4 |
|
simp2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
5 |
|
simp3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
6 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ) |
8 |
1 2
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
10 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
11 |
3 7 9 10
|
syl3anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) |
12 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) ) |
13 |
3 4 5 11 12
|
syl13anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) ) |
14 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
15 |
1 14 2
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) = ( GId ‘ 𝐺 ) ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) = ( GId ‘ 𝐺 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
18 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐵 ) ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
19 |
3 5 7 9 18
|
syl13anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐺 ( 𝑁 ‘ 𝐵 ) ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
20 |
1 14
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
21 |
8 20
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
23 |
17 19 22
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝑁 ‘ 𝐴 ) ) |
24 |
23
|
oveq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) = ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
25 |
1 14 2
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
26 |
25
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
27 |
13 24 26
|
3eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) |
28 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
29 |
1 14 2
|
grpoinvid1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) ) |
30 |
3 28 11 29
|
syl3anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ↔ ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( GId ‘ 𝐺 ) ) ) |
31 |
27 30
|
mpbird |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ 𝐵 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |