| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinvfval.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpinvfval.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | grpinvfval.3 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | grpoinvfval | ⊢ ( 𝐺  ∈  GrpOp  →  𝑁  =  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ) | 
						
							| 5 | 4 | fveq1d | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝑁 ‘ 𝐴 )  =  ( ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ‘ 𝐴 ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦 𝐺 𝑥 )  =  ( 𝑦 𝐺 𝐴 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦 𝐺 𝑥 )  =  𝑈  ↔  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 8 | 7 | riotabidv | ⊢ ( 𝑥  =  𝐴  →  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 )  =  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) | 
						
							| 10 |  | riotaex | ⊢ ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 )  ∈  V | 
						
							| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑥  ∈  𝑋  ↦  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝑥 )  =  𝑈 ) ) ‘ 𝐴 )  =  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 12 | 5 11 | sylan9eq | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( ℩ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) ) |