Metamath Proof Explorer


Theorem grpoinvval

Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = ( GId ‘ 𝐺 )
grpinvfval.3 𝑁 = ( inv ‘ 𝐺 )
Assertion grpoinvval ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) = ( 𝑦𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) )

Proof

Step Hyp Ref Expression
1 grpinvfval.1 𝑋 = ran 𝐺
2 grpinvfval.2 𝑈 = ( GId ‘ 𝐺 )
3 grpinvfval.3 𝑁 = ( inv ‘ 𝐺 )
4 1 2 3 grpoinvfval ( 𝐺 ∈ GrpOp → 𝑁 = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) )
5 4 fveq1d ( 𝐺 ∈ GrpOp → ( 𝑁𝐴 ) = ( ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ‘ 𝐴 ) )
6 oveq2 ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) )
7 6 eqeq1d ( 𝑥 = 𝐴 → ( ( 𝑦 𝐺 𝑥 ) = 𝑈 ↔ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) )
8 7 riotabidv ( 𝑥 = 𝐴 → ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) = ( 𝑦𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) )
9 eqid ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) = ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) )
10 riotaex ( 𝑦𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∈ V
11 8 9 10 fvmpt ( 𝐴𝑋 → ( ( 𝑥𝑋 ↦ ( 𝑦𝑋 ( 𝑦 𝐺 𝑥 ) = 𝑈 ) ) ‘ 𝐴 ) = ( 𝑦𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) )
12 5 11 sylan9eq ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) = ( 𝑦𝑋 ( 𝑦 𝐺 𝐴 ) = 𝑈 ) )