| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpkerinj.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpkerinj.2 | ⊢ 𝑊  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | grpkerinj.3 | ⊢ 𝑌  =  ran  𝐻 | 
						
							| 4 |  | grpkerinj.4 | ⊢ 𝑈  =  ( GId ‘ 𝐻 ) | 
						
							| 5 | 2 4 | ghomidOLD | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  ( 𝐹 ‘ 𝑊 )  =  𝑈 ) | 
						
							| 6 | 5 | sneqd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  { ( 𝐹 ‘ 𝑊 ) }  =  { 𝑈 } ) | 
						
							| 7 | 1 3 | ghomf | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 8 | 7 | ffnd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  𝐹  Fn  𝑋 ) | 
						
							| 9 | 1 2 | grpoidcl | ⊢ ( 𝐺  ∈  GrpOp  →  𝑊  ∈  𝑋 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  𝑊  ∈  𝑋 ) | 
						
							| 11 |  | fnsnfv | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝑊  ∈  𝑋 )  →  { ( 𝐹 ‘ 𝑊 ) }  =  ( 𝐹  “  { 𝑊 } ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  { ( 𝐹 ‘ 𝑊 ) }  =  ( 𝐹  “  { 𝑊 } ) ) | 
						
							| 13 | 6 12 | eqtr3d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  { 𝑈 }  =  ( 𝐹  “  { 𝑊 } ) ) | 
						
							| 14 | 13 | imaeq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  ( ◡ 𝐹  “  { 𝑈 } )  =  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑊 } ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) ) )  →  ( ◡ 𝐹  “  { 𝑈 } )  =  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑊 } ) ) ) | 
						
							| 16 | 9 | snssd | ⊢ ( 𝐺  ∈  GrpOp  →  { 𝑊 }  ⊆  𝑋 ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  { 𝑊 }  ⊆  𝑋 ) | 
						
							| 18 |  | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  { 𝑊 }  ⊆  𝑋 )  →  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑊 } ) )  =  { 𝑊 } ) | 
						
							| 19 | 17 18 | sylan2 | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) ) )  →  ( ◡ 𝐹  “  ( 𝐹  “  { 𝑊 } ) )  =  { 𝑊 } ) | 
						
							| 20 | 15 19 | eqtrd | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌  ∧  ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) ) )  →  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } ) | 
						
							| 21 | 20 | expcom | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  ( 𝐹 : 𝑋 –1-1→ 𝑌  →  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } ) ) | 
						
							| 22 | 7 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 23 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝐻  ∈  GrpOp ) | 
						
							| 24 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑌 ) | 
						
							| 25 | 24 | adantrr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑌 ) | 
						
							| 26 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑌 ) | 
						
							| 27 | 26 | adantrl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑌 ) | 
						
							| 28 |  | eqid | ⊢ (  /𝑔  ‘ 𝐻 )  =  (  /𝑔  ‘ 𝐻 ) | 
						
							| 29 | 3 4 28 | grpoeqdivid | ⊢ ( ( 𝐻  ∈  GrpOp  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑌 )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) )  =  𝑈 ) ) | 
						
							| 30 | 23 25 27 29 | syl3anc | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) )  =  𝑈 ) ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) )  =  𝑈 ) ) | 
						
							| 32 |  | eqid | ⊢ (  /𝑔  ‘ 𝐺 )  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 33 | 1 32 28 | ghomdiv | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  =  𝑈  ↔  ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) )  =  𝑈 ) ) | 
						
							| 36 | 4 | fvexi | ⊢ 𝑈  ∈  V | 
						
							| 37 | 36 | snid | ⊢ 𝑈  ∈  { 𝑈 } | 
						
							| 38 |  | eleq1 | ⊢ ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  =  𝑈  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 }  ↔  𝑈  ∈  { 𝑈 } ) ) | 
						
							| 39 | 37 38 | mpbiri | ⊢ ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  =  𝑈  →  ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 } ) | 
						
							| 40 | 7 | ffund | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  Fun  𝐹 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  Fun  𝐹 ) | 
						
							| 42 | 1 32 | grpodivcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 43 | 42 | 3expb | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 44 | 43 | 3ad2antl1 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 45 | 7 | fdmd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  dom  𝐹  =  𝑋 ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  dom  𝐹  =  𝑋 ) | 
						
							| 47 | 44 46 | eleqtrrd | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  dom  𝐹 ) | 
						
							| 48 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 }  ↔  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  ( ◡ 𝐹  “  { 𝑈 } ) ) ) | 
						
							| 49 | 41 47 48 | syl2anc | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 }  ↔  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  ( ◡ 𝐹  “  { 𝑈 } ) ) ) | 
						
							| 50 |  | eleq2 | ⊢ ( ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 }  →  ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  ( ◡ 𝐹  “  { 𝑈 } )  ↔  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  { 𝑊 } ) ) | 
						
							| 51 | 49 50 | sylan9bb | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 }  ↔  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  { 𝑊 } ) ) | 
						
							| 52 | 51 | an32s | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 }  ↔  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  { 𝑊 } ) ) | 
						
							| 53 |  | elsni | ⊢ ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  { 𝑊 }  →  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  =  𝑊 ) | 
						
							| 54 | 1 2 32 | grpoeqdivid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  =  𝑦  ↔  ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  =  𝑊 ) ) | 
						
							| 55 | 54 | biimprd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  =  𝑊  →  𝑥  =  𝑦 ) ) | 
						
							| 56 | 55 | 3expb | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  =  𝑊  →  𝑥  =  𝑦 ) ) | 
						
							| 57 | 56 | 3ad2antl1 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  =  𝑊  →  𝑥  =  𝑦 ) ) | 
						
							| 58 | 53 57 | syl5 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  { 𝑊 }  →  𝑥  =  𝑦 ) ) | 
						
							| 59 | 58 | adantlr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 )  ∈  { 𝑊 }  →  𝑥  =  𝑦 ) ) | 
						
							| 60 | 52 59 | sylbid | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  ∈  { 𝑈 }  →  𝑥  =  𝑦 ) ) | 
						
							| 61 | 39 60 | syl5 | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ ( 𝑥 (  /𝑔  ‘ 𝐺 ) 𝑦 ) )  =  𝑈  →  𝑥  =  𝑦 ) ) | 
						
							| 62 | 35 61 | sylbird | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) (  /𝑔  ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) )  =  𝑈  →  𝑥  =  𝑦 ) ) | 
						
							| 63 | 31 62 | sylbid | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 64 | 63 | ralrimivva | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 65 |  | dff13 | ⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 66 | 22 64 65 | sylanbrc | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  ∧  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } )  →  𝐹 : 𝑋 –1-1→ 𝑌 ) | 
						
							| 67 | 66 | ex | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  ( ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 }  →  𝐹 : 𝑋 –1-1→ 𝑌 ) ) | 
						
							| 68 | 21 67 | impbid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐻  ∈  GrpOp  ∧  𝐹  ∈  ( 𝐺  GrpOpHom  𝐻 ) )  →  ( 𝐹 : 𝑋 –1-1→ 𝑌  ↔  ( ◡ 𝐹  “  { 𝑈 } )  =  { 𝑊 } ) ) |