Step |
Hyp |
Ref |
Expression |
1 |
|
grplcan.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
oveq2 |
⊢ ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
3 |
2
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
4 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
6 |
1 4 5
|
grpolinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ) |
8 |
7
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐴 ) ) |
9 |
1 5
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
10 |
9
|
adantrl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
11 |
|
simprr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) |
12 |
|
simprl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
13 |
10 11 12
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
14 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) ) |
15 |
13 14
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) ) |
16 |
15
|
anassrs |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐴 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) ) |
17 |
1 4
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐴 ) = 𝐴 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐴 ) = 𝐴 ) |
19 |
8 16 18
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = 𝐴 ) |
20 |
19
|
adantrl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐴 ) ) = 𝐴 ) |
22 |
6
|
adantrl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ) |
23 |
22
|
oveq1d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐵 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) ) |
24 |
9
|
adantrl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
25 |
|
simprr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) |
26 |
|
simprl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
27 |
24 25 26
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
28 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐵 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
29 |
27 28
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 𝐶 ) 𝐺 𝐵 ) = ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) ) |
30 |
1 4
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
31 |
30
|
adantrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
32 |
23 29 31
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) = 𝐵 ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) = 𝐵 ) |
34 |
33
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) 𝐺 ( 𝐶 𝐺 𝐵 ) ) = 𝐵 ) |
35 |
3 21 34
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) → 𝐴 = 𝐵 ) |
36 |
35
|
exp53 |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) → 𝐴 = 𝐵 ) ) ) ) ) |
37 |
36
|
3imp2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) → 𝐴 = 𝐵 ) ) |
38 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ) |
39 |
37 38
|
impbid1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐶 𝐺 𝐴 ) = ( 𝐶 𝐺 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |