| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdivf.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | simpr1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 4 |  | simpr2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 5 |  | eqid | ⊢ ( inv ‘ 𝐺 )  =  ( inv ‘ 𝐺 ) | 
						
							| 6 | 1 5 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐶  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 7 | 6 | 3ad2antr3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 8 | 3 4 7 | 3jca | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) ) | 
						
							| 9 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) )  =  ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) | 
						
							| 10 | 8 9 | syldan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) )  =  ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐺  ∈  GrpOp ) | 
						
							| 12 | 1 | grpocl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 𝐵 )  ∈  𝑋 ) | 
						
							| 13 | 12 | 3adant3r3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐺 𝐵 )  ∈  𝑋 ) | 
						
							| 14 |  | simpr3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐶  ∈  𝑋 ) | 
						
							| 15 | 1 5 2 | grpodivval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴 𝐺 𝐵 )  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 16 | 11 13 14 15 | syl3anc | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 17 | 1 5 2 | grpodivval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐶 )  =  ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 18 | 17 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐷 𝐶 )  =  ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐺 ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐴 𝐺 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) | 
						
							| 20 | 10 16 19 | 3eqtr4d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 )  =  ( 𝐴 𝐺 ( 𝐵 𝐷 𝐶 ) ) ) |