| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpdivf.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpdivf.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( inv ‘ 𝐺 )  =  ( inv ‘ 𝐺 ) | 
						
							| 4 | 1 3 2 | grpodivval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 )  =  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐺  ∈  GrpOp ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 8 | 1 3 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 11 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 )  =  ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) ) | 
						
							| 12 | 6 7 9 10 11 | syl13anc | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 )  =  ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 14 | 1 13 3 | grpolinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 17 | 1 13 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  𝐴 ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  𝐴 ) | 
						
							| 19 | 16 18 | eqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) )  =  𝐴 ) | 
						
							| 20 | 12 19 | eqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 )  =  𝐴 ) | 
						
							| 21 | 5 20 | eqtrd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 )  =  𝐴 ) |