Metamath Proof Explorer


Theorem grponpcan

Description: Cancellation law for group division. ( npcan analog.) (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺 )
Assertion grponpcan ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 grpdivf.1 𝑋 = ran 𝐺
2 grpdivf.3 𝐷 = ( /𝑔𝐺 )
3 eqid ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 )
4 1 3 2 grpodivval ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) )
5 4 oveq1d ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) )
6 simp1 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐺 ∈ GrpOp )
7 simp2 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐴𝑋 )
8 1 3 grpoinvcl ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 )
9 8 3adant2 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 )
10 simp3 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐵𝑋 )
11 1 grpoass ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋𝐵𝑋 ) ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) )
12 6 7 9 10 11 syl13anc ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) )
13 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
14 1 13 3 grpolinv ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋 ) → ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) = ( GId ‘ 𝐺 ) )
15 14 oveq2d ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) )
16 15 3adant2 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) )
17 1 13 grporid ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 )
18 17 3adant3 ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 )
19 16 18 eqtrd ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐺 𝐵 ) ) = 𝐴 )
20 12 19 eqtrd ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐺 𝐵 ) = 𝐴 )
21 5 20 eqtrd ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐵 ) = 𝐴 )