| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grprcan.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 3 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐶  ∈  𝑋 )  →  ( ( ( ( GId ‘ 𝐺 ) 𝐺 𝐶 )  =  𝐶  ∧  ( 𝐶 𝐺 ( GId ‘ 𝐺 ) )  =  𝐶 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐶 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝑦 𝐺 𝐶 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) )  →  ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 5 | 4 | reximi | ⊢ ( ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐶 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) )  →  ∃ 𝑦  ∈  𝑋 ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( ( ( GId ‘ 𝐺 ) 𝐺 𝐶 )  =  𝐶  ∧  ( 𝐶 𝐺 ( GId ‘ 𝐺 ) )  =  𝐶 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐶 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) )  →  ∃ 𝑦  ∈  𝑋 ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐶  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 8 | 7 | ad2ant2rl | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ∃ 𝑦  ∈  𝑋 ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) ) | 
						
							| 10 | 9 | ad2antll | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) ) | 
						
							| 11 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 12 | 11 | 3anassrs | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝐶  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 13 | 12 | adantlrl | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 14 | 13 | adantrr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 15 | 1 | grpoass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 16 | 15 | 3exp2 | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐵  ∈  𝑋  →  ( 𝐶  ∈  𝑋  →  ( 𝑦  ∈  𝑋  →  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) ) ) ) | 
						
							| 17 | 16 | imp42 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 18 | 17 | adantllr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 19 | 18 | adantrr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) )  →  ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 20 | 10 14 19 | 3eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) )  →  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 21 | 20 | adantrrl | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  →  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 23 | 22 | ad2antrl | ⊢ ( ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) )  →  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  →  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 26 | 25 | ad2antrl | ⊢ ( ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) )  →  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) )  =  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 28 | 21 24 27 | 3eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) | 
						
							| 29 | 1 2 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  𝐴 ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  ( 𝐴 𝐺 ( GId ‘ 𝐺 ) )  =  𝐴 ) | 
						
							| 31 | 1 2 | grporid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) )  =  𝐵 ) | 
						
							| 32 | 31 | ad2ant2r | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) )  =  𝐵 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  ( 𝐵 𝐺 ( GId ‘ 𝐺 ) )  =  𝐵 ) | 
						
							| 34 | 28 30 33 | 3eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  ∧  ( 𝑦  ∈  𝑋  ∧  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  ∧  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) ) )  →  𝐴  =  𝐵 ) | 
						
							| 35 | 34 | exp45 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝑦  ∈  𝑋  →  ( ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  →  ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 36 | 35 | rexlimdv | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ∃ 𝑦  ∈  𝑋 ( 𝐶 𝐺 𝑦 )  =  ( GId ‘ 𝐺 )  →  ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 37 | 8 36 | mpd | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  →  𝐴  =  𝐵 ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 ) ) | 
						
							| 39 | 37 38 | impbid1 | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 40 | 39 | exp43 | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐴  ∈  𝑋  →  ( 𝐵  ∈  𝑋  →  ( 𝐶  ∈  𝑋  →  ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  ↔  𝐴  =  𝐵 ) ) ) ) ) | 
						
							| 41 | 40 | 3imp2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 )  =  ( 𝐵 𝐺 𝐶 )  ↔  𝐴  =  𝐵 ) ) |