Step |
Hyp |
Ref |
Expression |
1 |
|
grprcan.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
3 |
1 2
|
grpoidinv2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( GId ‘ 𝐺 ) 𝐺 𝐶 ) = 𝐶 ∧ ( 𝐶 𝐺 ( GId ‘ 𝐺 ) ) = 𝐶 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) ) ) |
4 |
|
simpr |
⊢ ( ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) → ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
6 |
5
|
adantl |
⊢ ( ( ( ( ( GId ‘ 𝐺 ) 𝐺 𝐶 ) = 𝐶 ∧ ( 𝐶 𝐺 ( GId ‘ 𝐺 ) ) = 𝐶 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐶 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
7 |
3 6
|
syl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
8 |
7
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ) |
9 |
|
oveq1 |
⊢ ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) ) |
10 |
9
|
ad2antll |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) ) |
11 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
12 |
11
|
3anassrs |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
13 |
12
|
adantlrl |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
14 |
13
|
adantrr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
15 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
16 |
15
|
3exp2 |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) ) ) ) |
17 |
16
|
imp42 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
18 |
17
|
adantllr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
19 |
18
|
adantrr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( ( 𝐵 𝐺 𝐶 ) 𝐺 𝑦 ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
20 |
10 14 19
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
21 |
20
|
adantrrl |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) ) |
22 |
|
oveq2 |
⊢ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
23 |
22
|
ad2antrl |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) ) |
25 |
|
oveq2 |
⊢ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
26 |
25
|
ad2antrl |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) → ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐵 𝐺 ( 𝐶 𝐺 𝑦 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
28 |
21 24 27
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) ) |
29 |
1 2
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐴 𝐺 ( GId ‘ 𝐺 ) ) = 𝐴 ) |
31 |
1 2
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) = 𝐵 ) |
32 |
31
|
ad2ant2r |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) = 𝐵 ) |
33 |
32
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → ( 𝐵 𝐺 ( GId ‘ 𝐺 ) ) = 𝐵 ) |
34 |
28 30 33
|
3eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) ∧ ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) ) ) → 𝐴 = 𝐵 ) |
35 |
34
|
exp45 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑋 → ( ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → 𝐴 = 𝐵 ) ) ) ) |
36 |
35
|
rexlimdv |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝐶 𝐺 𝑦 ) = ( GId ‘ 𝐺 ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → 𝐴 = 𝐵 ) ) ) |
37 |
8 36
|
mpd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) → 𝐴 = 𝐵 ) ) |
38 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ) |
39 |
37 38
|
impbid1 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
40 |
39
|
exp43 |
⊢ ( 𝐺 ∈ GrpOp → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) ) ) ) |
41 |
40
|
3imp2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) = ( 𝐵 𝐺 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |