Metamath Proof Explorer
		
		
		
		Description:  The right inverse of a group element.  (Contributed by NM, 27-Oct-2006)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | grpinv.1 | ⊢ 𝑋  =  ran  𝐺 | 
					
						|  |  | grpinv.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
					
						|  |  | grpinv.3 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
				
					|  | Assertion | grporinv | ⊢  ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpinv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpinv.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 |  | grpinv.3 | ⊢ 𝑁  =  ( inv ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | grpoinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) )  =  𝑈 ) |