Metamath Proof Explorer
Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
grpinv.1 |
⊢ 𝑋 = ran 𝐺 |
|
|
grpinv.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
|
|
grpinv.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
|
Assertion |
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
grpinv.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
|
grpinv.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
4 |
1 2 3
|
grpoinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |