Metamath Proof Explorer


Theorem grpplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grpplusf.1 𝐵 = ( Base ‘ 𝐺 )
grpplusf.2 𝐹 = ( +𝑓𝐺 )
Assertion grpplusf ( 𝐺 ∈ Grp → 𝐹 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpplusf.1 𝐵 = ( Base ‘ 𝐺 )
2 grpplusf.2 𝐹 = ( +𝑓𝐺 )
3 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
4 1 2 mndplusf ( 𝐺 ∈ Mnd → 𝐹 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
5 3 4 syl ( 𝐺 ∈ Grp → 𝐹 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )