Description: The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpstrx.b | ⊢ 𝐵 ∈ V | |
| grpstrx.p | ⊢ + ∈ V | ||
| grpstrx.g | ⊢ 𝐺 = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } | ||
| Assertion | grpplusgx | ⊢ + = ( +g ‘ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpstrx.b | ⊢ 𝐵 ∈ V | |
| 2 | grpstrx.p | ⊢ + ∈ V | |
| 3 | grpstrx.g | ⊢ 𝐺 = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } | |
| 4 | basendx | ⊢ ( Base ‘ ndx ) = 1 | |
| 5 | 4 | opeq1i | ⊢ 〈 ( Base ‘ ndx ) , 𝐵 〉 = 〈 1 , 𝐵 〉 |
| 6 | plusgndx | ⊢ ( +g ‘ ndx ) = 2 | |
| 7 | 6 | opeq1i | ⊢ 〈 ( +g ‘ ndx ) , + 〉 = 〈 2 , + 〉 |
| 8 | 5 7 | preq12i | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } = { 〈 1 , 𝐵 〉 , 〈 2 , + 〉 } |
| 9 | 3 8 | eqtr4i | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
| 10 | 9 | grpplusg | ⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
| 11 | 2 10 | ax-mp | ⊢ + = ( +g ‘ 𝐺 ) |