| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 7 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  −  𝑌 )  =  ( 𝑋  +  ( 𝑌  −  𝑌 ) ) ) | 
						
							| 8 | 4 5 6 6 7 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  𝑌 )  −  𝑌 )  =  ( 𝑋  +  ( 𝑌  −  𝑌 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 10 | 1 9 3 | grpsubid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  −  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( 𝑌  −  𝑌 ) )  =  ( 𝑋  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 12 | 11 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( 𝑌  −  𝑌 ) )  =  ( 𝑋  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 13 | 1 2 9 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  +  ( 0g ‘ 𝐺 ) )  =  𝑋 ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( 0g ‘ 𝐺 ) )  =  𝑋 ) | 
						
							| 15 | 8 12 14 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  𝑌 )  −  𝑌 )  =  𝑋 ) |