| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grppropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
grppropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
grppropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
1 2 3
|
mndpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd ) ) |
| 5 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 7 |
3 6
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 8 |
7
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 9 |
8
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 10 |
9
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 11 |
1
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 12 |
1 11
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 13 |
2
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 14 |
2 13
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 15 |
10 12 14
|
3bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 16 |
4 15
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ↔ ( 𝐿 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 18 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 20 |
17 18 19
|
isgrp |
⊢ ( 𝐾 ∈ Grp ↔ ( 𝐾 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 24 |
21 22 23
|
isgrp |
⊢ ( 𝐿 ∈ Grp ↔ ( 𝐿 ∈ Mnd ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 25 |
16 20 24
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |