| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grppropstr.b | ⊢ ( Base ‘ 𝐾 )  =  𝐵 | 
						
							| 2 |  | grppropstr.p | ⊢ ( +g ‘ 𝐾 )  =   + | 
						
							| 3 |  | grppropstr.l | ⊢ 𝐿  =  { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 } | 
						
							| 4 |  | fvex | ⊢ ( Base ‘ 𝐾 )  ∈  V | 
						
							| 5 | 1 4 | eqeltrri | ⊢ 𝐵  ∈  V | 
						
							| 6 | 3 | grpbase | ⊢ ( 𝐵  ∈  V  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ 𝐵  =  ( Base ‘ 𝐿 ) | 
						
							| 8 | 1 7 | eqtri | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐿 ) | 
						
							| 9 |  | fvex | ⊢ ( +g ‘ 𝐾 )  ∈  V | 
						
							| 10 | 2 9 | eqeltrri | ⊢  +   ∈  V | 
						
							| 11 | 3 | grpplusg | ⊢ (  +   ∈  V  →   +   =  ( +g ‘ 𝐿 ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢  +   =  ( +g ‘ 𝐿 ) | 
						
							| 13 | 2 12 | eqtri | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐿 ) | 
						
							| 14 | 8 13 | grpprop | ⊢ ( 𝐾  ∈  Grp  ↔  𝐿  ∈  Grp ) |