| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpraddf1o.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpraddf1o.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpraddf1o.n | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝑥  +  𝑋 ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 | 1 2 4 5 6 | grpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  +  𝑋 )  ∈  𝐵 ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 1 10 8 11 | grpinvcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 13 | 1 2 8 9 12 | grpcld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  ∈  𝐵 ) | 
						
							| 14 |  | eqcom | ⊢ ( 𝑥  =  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  ↔  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  =  𝑥 ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 16 | 13 | adantrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  ∈  𝐵 ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 19 | 1 2 | grprcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  ∈  𝐵  ∧  𝑥  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  +  𝑋 )  =  ( 𝑥  +  𝑋 )  ↔  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  =  𝑥 ) ) | 
						
							| 20 | 15 16 17 18 19 | syl13anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  +  𝑋 )  =  ( 𝑥  +  𝑋 )  ↔  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  =  𝑥 ) ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 22 | 12 | adantrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 23 | 1 2 15 21 22 18 | grpassd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  +  𝑋 )  =  ( 𝑦  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  +  𝑋 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 25 | 1 2 24 10 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  +  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  +  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 )  +  𝑋 ) )  =  ( 𝑦  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 28 | 1 2 24 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  +  ( 0g ‘ 𝐺 ) )  =  𝑦 ) | 
						
							| 29 | 28 | ad2ant2rl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  +  ( 0g ‘ 𝐺 ) )  =  𝑦 ) | 
						
							| 30 | 23 27 29 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  +  𝑋 )  =  𝑦 ) | 
						
							| 31 | 30 | eqeq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  +  𝑋 )  =  ( 𝑥  +  𝑋 )  ↔  𝑦  =  ( 𝑥  +  𝑋 ) ) ) | 
						
							| 32 | 20 31 | bitr3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  =  𝑥  ↔  𝑦  =  ( 𝑥  +  𝑋 ) ) ) | 
						
							| 33 | 14 32 | bitrid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  =  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) )  ↔  𝑦  =  ( 𝑥  +  𝑋 ) ) ) | 
						
							| 34 | 3 7 13 33 | f1o2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |