Step |
Hyp |
Ref |
Expression |
1 |
|
grpraddf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpraddf1o.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpraddf1o.n |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 + 𝑋 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
5 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
6 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
7 |
1 2 4 5 6
|
grpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 𝑋 ) ∈ 𝐵 ) |
8 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
9 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
11 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
12 |
1 10 8 11
|
grpinvcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
1 2 8 9 12
|
grpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ∈ 𝐵 ) |
14 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ↔ ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ) |
15 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
16 |
13
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ∈ 𝐵 ) |
17 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
18 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
19 |
1 2
|
grprcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑥 + 𝑋 ) ↔ ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ) ) |
20 |
15 16 17 18 19
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑥 + 𝑋 ) ↔ ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ) ) |
21 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
22 |
12
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
23 |
1 2 15 21 22 18
|
grpassd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑦 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
25 |
1 2 24 10
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
27 |
26
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑋 ) ) = ( 𝑦 + ( 0g ‘ 𝐺 ) ) ) |
28 |
1 2 24
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 + ( 0g ‘ 𝐺 ) ) = 𝑦 ) |
29 |
28
|
ad2ant2rl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 + ( 0g ‘ 𝐺 ) ) = 𝑦 ) |
30 |
23 27 29
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = 𝑦 ) |
31 |
30
|
eqeq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑋 ) = ( 𝑥 + 𝑋 ) ↔ 𝑦 = ( 𝑥 + 𝑋 ) ) ) |
32 |
20 31
|
bitr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = 𝑥 ↔ 𝑦 = ( 𝑥 + 𝑋 ) ) ) |
33 |
14 32
|
bitrid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝑦 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ↔ 𝑦 = ( 𝑥 + 𝑋 ) ) ) |
34 |
3 7 13 33
|
f1o2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |