| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grprcan.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grprcan.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 4 |
1 2 3
|
grpinvex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 5 |
4
|
3ad2antr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 6 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( ( 𝑋 + 𝑍 ) + 𝑦 ) = ( ( 𝑌 + 𝑍 ) + 𝑦 ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝐺 ∈ Grp ) |
| 9 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 10 |
8 9
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 11 |
|
simplr1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 12 |
|
simplr3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) |
| 13 |
|
simprll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 14 |
10 11 12 13
|
caovassd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( ( 𝑋 + 𝑍 ) + 𝑦 ) = ( 𝑋 + ( 𝑍 + 𝑦 ) ) ) |
| 15 |
|
simplr2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 16 |
10 15 12 13
|
caovassd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( ( 𝑌 + 𝑍 ) + 𝑦 ) = ( 𝑌 + ( 𝑍 + 𝑦 ) ) ) |
| 17 |
7 14 16
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 𝑍 + 𝑦 ) ) = ( 𝑌 + ( 𝑍 + 𝑦 ) ) ) |
| 18 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 + 𝑣 ) ∈ 𝐵 ) |
| 19 |
8 18
|
syl3an1 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 + 𝑣 ) ∈ 𝐵 ) |
| 20 |
1 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 21 |
8 20
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 22 |
1 2 3
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 23 |
8 22
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 24 |
1 2 3
|
grpinvex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 25 |
8 24
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ∃ 𝑣 ∈ 𝐵 ( 𝑣 + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 26 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) |
| 27 |
13
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 28 |
|
simprlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 30 |
19 21 23 10 25 26 27 29
|
grpinva |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 31 |
12 30
|
mpdan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑍 + 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 𝑍 + 𝑦 ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
| 33 |
31
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑌 + ( 𝑍 + 𝑦 ) ) = ( 𝑌 + ( 0g ‘ 𝐺 ) ) ) |
| 34 |
17 32 33
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = ( 𝑌 + ( 0g ‘ 𝐺 ) ) ) |
| 35 |
1 2 3 8 11
|
grpridd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 36 |
1 2 3 8 15
|
grpridd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → ( 𝑌 + ( 0g ‘ 𝐺 ) ) = 𝑌 ) |
| 37 |
34 35 36
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ∧ ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) ) → 𝑋 = 𝑌 ) |
| 38 |
37
|
expr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 + 𝑍 ) = ( 0g ‘ 𝐺 ) ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 39 |
5 38
|
rexlimddv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ) |
| 41 |
39 40
|
impbid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |