Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinv.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpinv.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
grpinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
6 |
1 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
7 |
1 2 3
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
8 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
9 |
1 2 3
|
grpinvex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
10 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
11 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
1 2 3 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
13 |
5 6 7 8 9 10 11 12
|
grprinvd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |