Metamath Proof Explorer
		
		
		
		Description:  The right inverse of a group element.  Deduction associated with
       grprinv .  (Contributed by SN, 29-Jan-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | grplinvd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | grplinvd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
					
						|  |  | grplinvd.u | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
					
						|  |  | grplinvd.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
					
						|  |  | grplinvd.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
					
						|  |  | grplinvd.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
				
					|  | Assertion | grprinvd | ⊢  ( 𝜑  →  ( 𝑋  +  ( 𝑁 ‘ 𝑋 ) )  =   0  ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplinvd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grplinvd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grplinvd.u | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | grplinvd.n | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 5 |  | grplinvd.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | grplinvd.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 | 1 2 3 4 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  +  ( 𝑁 ‘ 𝑋 ) )  =   0  ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑁 ‘ 𝑋 ) )  =   0  ) |