Metamath Proof Explorer


Theorem grpsgrp

Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion grpsgrp ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
2 mndsgrp ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp )
3 1 2 syl ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp )