| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 5 | 1 2 4 3 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  =  𝑍  ↔  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  =  𝑍 ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 10 |  | simpr1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 11 | 1 4 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 12 | 11 | 3ad2antr2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 13 | 1 2 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 14 | 9 10 12 13 | syl3anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 15 |  | simpr3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 16 |  | simpr2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 17 | 1 2 | grprcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  ∈  𝐵  ∧  𝑍  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑍  +  𝑌 )  ↔  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  =  𝑍 ) ) | 
						
							| 18 | 9 14 15 16 17 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑍  +  𝑌 )  ↔  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  =  𝑍 ) ) | 
						
							| 19 | 1 2 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑋  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  +  𝑌 ) ) ) | 
						
							| 20 | 9 10 12 16 19 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑋  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  +  𝑌 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 22 | 1 2 21 4 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  +  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 23 | 22 | 3ad2antr2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  +  𝑌 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  +  𝑌 ) )  =  ( 𝑋  +  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 25 | 1 2 21 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  +  ( 0g ‘ 𝐺 ) )  =  𝑋 ) | 
						
							| 26 | 25 | 3ad2antr1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  +  ( 0g ‘ 𝐺 ) )  =  𝑋 ) | 
						
							| 27 | 20 24 26 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  +  𝑌 )  =  𝑋 ) | 
						
							| 28 | 27 | eqeq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  +  𝑌 )  =  ( 𝑍  +  𝑌 )  ↔  𝑋  =  ( 𝑍  +  𝑌 ) ) ) | 
						
							| 29 | 8 18 28 | 3bitr2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  =  𝑍  ↔  𝑋  =  ( 𝑍  +  𝑌 ) ) ) | 
						
							| 30 |  | eqcom | ⊢ ( 𝑋  =  ( 𝑍  +  𝑌 )  ↔  ( 𝑍  +  𝑌 )  =  𝑋 ) | 
						
							| 31 | 29 30 | bitrdi | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑌 )  =  𝑍  ↔  ( 𝑍  +  𝑌 )  =  𝑋 ) ) |