Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
5 |
1 2 4 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑍 ) ) |
9 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
10 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
11 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
12 |
11
|
3ad2antr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) |
13 |
1 2
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
14 |
9 10 12 13
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
15 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
16 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
17 |
1 2
|
grprcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑍 + 𝑌 ) ↔ ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑍 ) ) |
18 |
9 14 15 16 17
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑍 + 𝑌 ) ↔ ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = 𝑍 ) ) |
19 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) ) ) |
20 |
9 10 12 16 19
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
22 |
1 2 21 4
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
23 |
22
|
3ad2antr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) = ( 0g ‘ 𝐺 ) ) |
24 |
23
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) + 𝑌 ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
25 |
1 2 21
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
26 |
25
|
3ad2antr1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
27 |
20 24 26
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = 𝑋 ) |
28 |
27
|
eqeq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) + 𝑌 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = ( 𝑍 + 𝑌 ) ) ) |
29 |
8 18 28
|
3bitr2d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ 𝑋 = ( 𝑍 + 𝑌 ) ) ) |
30 |
|
eqcom |
⊢ ( 𝑋 = ( 𝑍 + 𝑌 ) ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) |
31 |
29 30
|
bitrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) = 𝑍 ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) ) |