Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubid.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
grpsubid.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
grpsubadd0sub.p |
⊢ + = ( +g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
6 |
1 4 5 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
8 |
1 3 5 2
|
grpinvval2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( 0 − 𝑌 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( 0 − 𝑌 ) ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 + ( 0 − 𝑌 ) ) ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( 0 − 𝑌 ) ) ) |