| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpsubid.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpsubid.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpsubid.m | 
							⊢  −   =  ( -g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							grpsubadd0sub.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								1 4 5 3
							 | 
							grpsubval | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant1 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) )  | 
						
						
							| 8 | 
							
								1 3 5 2
							 | 
							grpinvval2 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  =  (  0   −  𝑌 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant2 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  =  (  0   −  𝑌 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq2d | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  =  ( 𝑋  +  (  0   −  𝑌 ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtrd | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  (  0   −  𝑌 ) ) )  |