Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | 1 2 | grpsubf | ⊢ ( 𝐺 ∈ Grp → − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 4 | fovcdm | ⊢ ( ( − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) | |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |