Metamath Proof Explorer


Theorem grpsubf

Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses grpsubcl.b 𝐵 = ( Base ‘ 𝐺 )
grpsubcl.m = ( -g𝐺 )
Assertion grpsubf ( 𝐺 ∈ Grp → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpsubcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpsubcl.m = ( -g𝐺 )
3 eqid ( invg𝐺 ) = ( invg𝐺 )
4 1 3 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑦𝐵 ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝐵 )
5 4 3adant2 ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝐵 )
6 eqid ( +g𝐺 ) = ( +g𝐺 )
7 1 6 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 )
8 5 7 syld3an3 ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 )
9 8 3expb ( ( 𝐺 ∈ Grp ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 )
10 9 ralrimivva ( 𝐺 ∈ Grp → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 )
11 1 6 3 2 grpsubfval = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) )
12 11 fmpo ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
13 10 12 sylib ( 𝐺 ∈ Grp → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )