Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubcl.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
4 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
1 6
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
8 |
5 7
|
syld3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
9 |
8
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
10 |
9
|
ralrimivva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
11 |
1 6 3 2
|
grpsubfval |
⊢ − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
12 |
11
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ↔ − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
13 |
10 12
|
sylib |
⊢ ( 𝐺 ∈ Grp → − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |