| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubval.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubval.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | grpsubval.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝐵 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =   +  ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝑔  =  𝐺  →  𝑥  =  𝑥 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( invg ‘ 𝑔 )  =  ( invg ‘ 𝐺 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( invg ‘ 𝑔 )  =  𝐼 ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( invg ‘ 𝑔 ) ‘ 𝑦 )  =  ( 𝐼 ‘ 𝑦 ) ) | 
						
							| 13 | 8 9 12 | oveq123d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 ( +g ‘ 𝑔 ) ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) )  =  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) ) | 
						
							| 14 | 6 6 13 | mpoeq123dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥  ∈  ( Base ‘ 𝑔 ) ,  𝑦  ∈  ( Base ‘ 𝑔 )  ↦  ( 𝑥 ( +g ‘ 𝑔 ) ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) ) ) | 
						
							| 15 |  | df-sbg | ⊢ -g  =  ( 𝑔  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑔 ) ,  𝑦  ∈  ( Base ‘ 𝑔 )  ↦  ( 𝑥 ( +g ‘ 𝑔 ) ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 17 | 16 16 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) )  ∈  V | 
						
							| 18 | 14 15 17 | fvmpt | ⊢ ( 𝐺  ∈  V  →  ( -g ‘ 𝐺 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 4 18 | eqtrid | ⊢ ( 𝐺  ∈  V  →   −   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) ) ) | 
						
							| 20 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( -g ‘ 𝐺 )  =  ∅ ) | 
						
							| 21 | 4 20 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →   −   =  ∅ ) | 
						
							| 22 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Base ‘ 𝐺 )  =  ∅ ) | 
						
							| 23 | 1 22 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 24 | 23 | olcd | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝐵  =  ∅  ∨  𝐵  =  ∅ ) ) | 
						
							| 25 |  | 0mpo0 | ⊢ ( ( 𝐵  =  ∅  ∨  𝐵  =  ∅ )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) )  =  ∅ ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) )  =  ∅ ) | 
						
							| 27 | 21 26 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →   −   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) ) ) | 
						
							| 28 | 19 27 | pm2.61i | ⊢  −   =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  +  ( 𝐼 ‘ 𝑦 ) ) ) |