Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubpropd.b |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
2 |
|
grpsubpropd.p |
⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
3 |
|
eqidd |
⊢ ( 𝜑 → 𝑎 = 𝑎 ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
5 |
2
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
6 |
4 1 5
|
grpinvpropd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) |
8 |
2 3 7
|
oveq123d |
⊢ ( 𝜑 → ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
9 |
1 1 8
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
13 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
14 |
10 11 12 13
|
grpsubfval |
⊢ ( -g ‘ 𝐺 ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
17 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
18 |
|
eqid |
⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) |
19 |
15 16 17 18
|
grpsubfval |
⊢ ( -g ‘ 𝐻 ) = ( 𝑎 ∈ ( Base ‘ 𝐻 ) , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) |
20 |
9 14 19
|
3eqtr4g |
⊢ ( 𝜑 → ( -g ‘ 𝐺 ) = ( -g ‘ 𝐻 ) ) |