| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubpropd.b | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 2 |  | grpsubpropd.p | ⊢ ( 𝜑  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝜑  →  𝑎  =  𝑎 ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 5 | 2 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | 
						
							| 6 | 4 1 5 | grpinvpropd | ⊢ ( 𝜑  →  ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐻 ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 ) ‘ 𝑏 )  =  ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) | 
						
							| 8 | 2 3 7 | oveq123d | ⊢ ( 𝜑  →  ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) | 
						
							| 9 | 1 1 8 | mpoeq123dv | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝐺 ) ,  𝑏  ∈  ( Base ‘ 𝐺 )  ↦  ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) )  =  ( 𝑎  ∈  ( Base ‘ 𝐻 ) ,  𝑏  ∈  ( Base ‘ 𝐻 )  ↦  ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 12 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 13 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 14 | 10 11 12 13 | grpsubfval | ⊢ ( -g ‘ 𝐺 )  =  ( 𝑎  ∈  ( Base ‘ 𝐺 ) ,  𝑏  ∈  ( Base ‘ 𝐺 )  ↦  ( 𝑎 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 16 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 17 |  | eqid | ⊢ ( invg ‘ 𝐻 )  =  ( invg ‘ 𝐻 ) | 
						
							| 18 |  | eqid | ⊢ ( -g ‘ 𝐻 )  =  ( -g ‘ 𝐻 ) | 
						
							| 19 | 15 16 17 18 | grpsubfval | ⊢ ( -g ‘ 𝐻 )  =  ( 𝑎  ∈  ( Base ‘ 𝐻 ) ,  𝑏  ∈  ( Base ‘ 𝐻 )  ↦  ( 𝑎 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑏 ) ) ) | 
						
							| 20 | 9 14 19 | 3eqtr4g | ⊢ ( 𝜑  →  ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐻 ) ) |