| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubcl.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 5 | 1 3 4 2 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑋  −  𝑍 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 6 | 5 | 3adant2 | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑋  −  𝑍 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 7 | 1 3 4 2 | grpsubval | ⊢ ( ( 𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑌  −  𝑍 )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑌  −  𝑍 )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 9 | 6 8 | eqeq12d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑋  −  𝑍 )  =  ( 𝑌  −  𝑍 )  ↔  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑍 )  =  ( 𝑌  −  𝑍 )  ↔  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 12 |  | simpr1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 13 |  | simpr2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 14 | 1 4 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑍  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑍 )  ∈  𝐵 ) | 
						
							| 15 | 14 | 3ad2antr3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑍 )  ∈  𝐵 ) | 
						
							| 16 | 1 3 | grprcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑍 )  ∈  𝐵 ) )  →  ( ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 17 | 11 12 13 15 16 | syl13anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  =  ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 18 | 10 17 | bitrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  −  𝑍 )  =  ( 𝑌  −  𝑍 )  ↔  𝑋  =  𝑌 ) ) |