Metamath Proof Explorer


Theorem grpsubrcan

Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubcl.b 𝐵 = ( Base ‘ 𝐺 )
grpsubcl.m = ( -g𝐺 )
Assertion grpsubrcan ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍 ) = ( 𝑌 𝑍 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 grpsubcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpsubcl.m = ( -g𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 eqid ( invg𝐺 ) = ( invg𝐺 )
5 1 3 4 2 grpsubval ( ( 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
6 5 3adant2 ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
7 1 3 4 2 grpsubval ( ( 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
8 7 3adant1 ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
9 6 8 eqeq12d ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) → ( ( 𝑋 𝑍 ) = ( 𝑌 𝑍 ) ↔ ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) ) )
10 9 adantl ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍 ) = ( 𝑌 𝑍 ) ↔ ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) ) )
11 simpl ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐺 ∈ Grp )
12 simpr1 ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
13 simpr2 ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
14 1 4 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑍𝐵 ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
15 14 3ad2antr3 ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
16 1 3 grprcan ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) ↔ 𝑋 = 𝑌 ) )
17 11 12 13 15 16 syl13anc ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) ↔ 𝑋 = 𝑌 ) )
18 10 17 bitrd ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑍 ) = ( 𝑌 𝑍 ) ↔ 𝑋 = 𝑌 ) )