Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubcl.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
5 |
1 3 4 2
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
7 |
1 3 4 2
|
grpsubval |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
12 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
13 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
14 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
15 |
14
|
3ad2antr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
16 |
1 3
|
grprcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ↔ 𝑋 = 𝑌 ) ) |
17 |
11 12 13 15 16
|
syl13anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ↔ 𝑋 = 𝑌 ) ) |
18 |
10 17
|
bitrd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) = ( 𝑌 − 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |