Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
5 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
6 |
5
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 − 𝑍 ) ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
8 |
1 2 7 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 − 𝑍 ) ∈ 𝐵 ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) ) ) |
9 |
4 6 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) ) ) |
10 |
1 3 7
|
grpinvsub |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) = ( 𝑍 − 𝑌 ) ) |
11 |
10
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) = ( 𝑍 − 𝑌 ) ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ ( 𝑌 − 𝑍 ) ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
13 |
9 12
|
eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |