| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | simpr1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 5 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝑌  −  𝑍 )  ∈  𝐵 ) | 
						
							| 6 | 5 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑌  −  𝑍 )  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 8 | 1 2 7 3 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  ( 𝑌  −  𝑍 )  ∈  𝐵 )  →  ( 𝑋  −  ( 𝑌  −  𝑍 ) )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ ( 𝑌  −  𝑍 ) ) ) ) | 
						
							| 9 | 4 6 8 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  −  ( 𝑌  −  𝑍 ) )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ ( 𝑌  −  𝑍 ) ) ) ) | 
						
							| 10 | 1 3 7 | grpinvsub | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝑌  −  𝑍 ) )  =  ( 𝑍  −  𝑌 ) ) | 
						
							| 11 | 10 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝑌  −  𝑍 ) )  =  ( 𝑍  −  𝑌 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ ( 𝑌  −  𝑍 ) ) )  =  ( 𝑋  +  ( 𝑍  −  𝑌 ) ) ) | 
						
							| 13 | 9 12 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋  −  ( 𝑌  −  𝑍 ) )  =  ( 𝑋  +  ( 𝑍  −  𝑌 ) ) ) |