Metamath Proof Explorer


Theorem grpsubsub

Description: Double group subtraction. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses grpsubadd.b 𝐵 = ( Base ‘ 𝐺 )
grpsubadd.p + = ( +g𝐺 )
grpsubadd.m = ( -g𝐺 )
Assertion grpsubsub ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 grpsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 grpsubadd.p + = ( +g𝐺 )
3 grpsubadd.m = ( -g𝐺 )
4 simpr1 ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
5 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
6 5 3adant3r1 ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 𝑍 ) ∈ 𝐵 )
7 eqid ( invg𝐺 ) = ( invg𝐺 )
8 1 2 7 3 grpsubval ( ( 𝑋𝐵 ∧ ( 𝑌 𝑍 ) ∈ 𝐵 ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 + ( ( invg𝐺 ) ‘ ( 𝑌 𝑍 ) ) ) )
9 4 6 8 syl2anc ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 + ( ( invg𝐺 ) ‘ ( 𝑌 𝑍 ) ) ) )
10 1 3 7 grpinvsub ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵 ) → ( ( invg𝐺 ) ‘ ( 𝑌 𝑍 ) ) = ( 𝑍 𝑌 ) )
11 10 3adant3r1 ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( invg𝐺 ) ‘ ( 𝑌 𝑍 ) ) = ( 𝑍 𝑌 ) )
12 11 oveq2d ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 + ( ( invg𝐺 ) ‘ ( 𝑌 𝑍 ) ) ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
13 9 12 eqtrd ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 ( 𝑌 𝑍 ) ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )