Step |
Hyp |
Ref |
Expression |
1 |
|
grptcmon.c |
⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝐺 ) ) |
2 |
|
grptcmon.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
grptcmon.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
4 |
|
grptcmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
grptcmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
grptcmon.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
7 |
|
grptcmon.m |
⊢ ( 𝜑 → 𝑀 = ( Mono ‘ 𝐶 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐶 ) |
12 |
2
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
13 |
1 12
|
mndtccat |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
14 |
4 3
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
15 |
5 3
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
16 |
8 9 10 11 13 14 15
|
ismon2 |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
17 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 = ( MndToCat ‘ 𝐺 ) ) |
18 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐺 ∈ Mnd ) |
19 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
20 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
21 |
20 19
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑧 ∈ 𝐵 ) |
22 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
23 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
24 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) |
25 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ) |
26 |
17 18 19 21 22 23 24 25
|
mndtcco2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ) |
27 |
17 18 19 21 22 23 24 25
|
mndtcco2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ↔ ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ) ) |
29 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
30 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
31 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
32 |
17 18 19 21 22 31
|
mndtchom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) = ( Base ‘ 𝐺 ) ) |
33 |
30 32
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑔 ∈ ( Base ‘ 𝐺 ) ) |
34 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
35 |
34 32
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ℎ ∈ ( Base ‘ 𝐺 ) ) |
36 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
37 |
17 18 19 22 23 31
|
mndtchom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( Base ‘ 𝐺 ) ) |
38 |
36 37
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
40 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
41 |
39 40
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑔 ∈ ( Base ‘ 𝐺 ) ∧ ℎ ∈ ( Base ‘ 𝐺 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ↔ 𝑔 = ℎ ) ) |
42 |
29 33 35 38 41
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ( +g ‘ 𝐺 ) ℎ ) ↔ 𝑔 = ℎ ) ) |
43 |
28 42
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ↔ 𝑔 = ℎ ) ) |
44 |
43
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
45 |
44
|
ralrimivvva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝑓 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
46 |
16 45
|
mpbiran3d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) ↔ 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
47 |
46
|
eqrdv |
⊢ ( 𝜑 → ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
48 |
7
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 ( Mono ‘ 𝐶 ) 𝑌 ) ) |
49 |
6
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
50 |
47 48 49
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |