Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) |
2 |
1
|
ffvelcdmda |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑎 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ) |
3 |
2
|
ex |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( 𝑎 ∈ 𝑉 → ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ) ) |
4 |
1
|
ffvelcdmda |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ) |
5 |
4
|
ex |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( 𝑏 ∈ 𝑉 → ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ) ) |
6 |
1
|
ffvelcdmda |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) |
7 |
6
|
ex |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( 𝑐 ∈ 𝑉 → ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) |
8 |
3 5 7
|
3anim123d |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) ) |
9 |
8
|
adantrd |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ) |
11 |
|
imaeq2 |
⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝐹 “ 𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) ) |
12 |
11
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( 𝐹 “ 𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ 𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) ) |
14 |
|
f1fn |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → 𝐹 Fn 𝑉 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝐹 Fn 𝑉 ) |
16 |
|
simprl1 |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑎 ∈ 𝑉 ) |
17 |
|
simprl2 |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑏 ∈ 𝑉 ) |
18 |
|
simprl3 |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑐 ∈ 𝑉 ) |
19 |
15 16 17 18
|
fnimatpd |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
20 |
13 19
|
eqtrd |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ) |
21 |
|
simpl |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
22 |
|
tpssi |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) |
24 |
|
sseq1 |
⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑇 ⊆ 𝑉 ↔ { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) ) |
25 |
24
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( 𝑇 ⊆ 𝑉 ↔ { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) ) |
26 |
23 25
|
mpbird |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → 𝑇 ⊆ 𝑉 ) |
27 |
26
|
adantl |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑇 ⊆ 𝑉 ) |
28 |
|
tpex |
⊢ { 𝑎 , 𝑏 , 𝑐 } ∈ V |
29 |
|
eleq1 |
⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑇 ∈ V ↔ { 𝑎 , 𝑏 , 𝑐 } ∈ V ) ) |
30 |
28 29
|
mpbiri |
⊢ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → 𝑇 ∈ V ) |
31 |
30
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → 𝑇 ∈ V ) |
32 |
31
|
adantl |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑇 ∈ V ) |
33 |
|
f1imaeng |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V ) → ( 𝐹 “ 𝑇 ) ≈ 𝑇 ) |
34 |
|
hasheni |
⊢ ( ( 𝐹 “ 𝑇 ) ≈ 𝑇 → ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V ) → ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = ( ♯ ‘ 𝑇 ) ) |
36 |
35
|
eqcomd |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑇 ⊆ 𝑉 ∧ 𝑇 ∈ V ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) ) |
37 |
21 27 32 36
|
syl3anc |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) ) |
38 |
|
simprrr |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ 𝑇 ) = 3 ) |
39 |
37 38
|
eqtr3d |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) |
40 |
10 20 39
|
3jca |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) |
41 |
40
|
ex |
⊢ ( 𝐹 : 𝑉 –1-1→ 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹 “ 𝑇 ) = { ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) , ( 𝐹 ‘ 𝑐 ) } ∧ ( ♯ ‘ ( 𝐹 “ 𝑇 ) ) = 3 ) ) ) |