Metamath Proof Explorer


Theorem grtrimap

Description: Conditions for mapping triangles onto triangles. Lemma for grimgrtri and grlimgrtri . (Contributed by AV, 23-Aug-2025)

Ref Expression
Assertion grtrimap ( 𝐹 : 𝑉1-1𝑊 → ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹𝑎 ) ∈ 𝑊 ∧ ( 𝐹𝑏 ) ∈ 𝑊 ∧ ( 𝐹𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹𝑇 ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) , ( 𝐹𝑐 ) } ∧ ( ♯ ‘ ( 𝐹𝑇 ) ) = 3 ) ) )

Proof

Step Hyp Ref Expression
1 f1f ( 𝐹 : 𝑉1-1𝑊𝐹 : 𝑉𝑊 )
2 1 ffvelcdmda ( ( 𝐹 : 𝑉1-1𝑊𝑎𝑉 ) → ( 𝐹𝑎 ) ∈ 𝑊 )
3 2 ex ( 𝐹 : 𝑉1-1𝑊 → ( 𝑎𝑉 → ( 𝐹𝑎 ) ∈ 𝑊 ) )
4 1 ffvelcdmda ( ( 𝐹 : 𝑉1-1𝑊𝑏𝑉 ) → ( 𝐹𝑏 ) ∈ 𝑊 )
5 4 ex ( 𝐹 : 𝑉1-1𝑊 → ( 𝑏𝑉 → ( 𝐹𝑏 ) ∈ 𝑊 ) )
6 1 ffvelcdmda ( ( 𝐹 : 𝑉1-1𝑊𝑐𝑉 ) → ( 𝐹𝑐 ) ∈ 𝑊 )
7 6 ex ( 𝐹 : 𝑉1-1𝑊 → ( 𝑐𝑉 → ( 𝐹𝑐 ) ∈ 𝑊 ) )
8 3 5 7 3anim123d ( 𝐹 : 𝑉1-1𝑊 → ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) → ( ( 𝐹𝑎 ) ∈ 𝑊 ∧ ( 𝐹𝑏 ) ∈ 𝑊 ∧ ( 𝐹𝑐 ) ∈ 𝑊 ) ) )
9 8 adantrd ( 𝐹 : 𝑉1-1𝑊 → ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( 𝐹𝑎 ) ∈ 𝑊 ∧ ( 𝐹𝑏 ) ∈ 𝑊 ∧ ( 𝐹𝑐 ) ∈ 𝑊 ) ) )
10 9 imp ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( 𝐹𝑎 ) ∈ 𝑊 ∧ ( 𝐹𝑏 ) ∈ 𝑊 ∧ ( 𝐹𝑐 ) ∈ 𝑊 ) )
11 imaeq2 ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝐹𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) )
12 11 ad2antrl ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( 𝐹𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) )
13 12 adantl ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹𝑇 ) = ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) )
14 f1fn ( 𝐹 : 𝑉1-1𝑊𝐹 Fn 𝑉 )
15 14 adantr ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝐹 Fn 𝑉 )
16 simprl1 ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑎𝑉 )
17 simprl2 ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑏𝑉 )
18 simprl3 ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑐𝑉 )
19 15 16 17 18 fnimatpd ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹 “ { 𝑎 , 𝑏 , 𝑐 } ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) , ( 𝐹𝑐 ) } )
20 13 19 eqtrd ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( 𝐹𝑇 ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) , ( 𝐹𝑐 ) } )
21 simpl ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝐹 : 𝑉1-1𝑊 )
22 tpssi ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) → { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 )
23 22 adantr ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 )
24 sseq1 ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑇𝑉 ↔ { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) )
25 24 ad2antrl ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( 𝑇𝑉 ↔ { 𝑎 , 𝑏 , 𝑐 } ⊆ 𝑉 ) )
26 23 25 mpbird ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → 𝑇𝑉 )
27 26 adantl ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑇𝑉 )
28 tpex { 𝑎 , 𝑏 , 𝑐 } ∈ V
29 eleq1 ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → ( 𝑇 ∈ V ↔ { 𝑎 , 𝑏 , 𝑐 } ∈ V ) )
30 28 29 mpbiri ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } → 𝑇 ∈ V )
31 30 ad2antrl ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → 𝑇 ∈ V )
32 31 adantl ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → 𝑇 ∈ V )
33 f1imaeng ( ( 𝐹 : 𝑉1-1𝑊𝑇𝑉𝑇 ∈ V ) → ( 𝐹𝑇 ) ≈ 𝑇 )
34 hasheni ( ( 𝐹𝑇 ) ≈ 𝑇 → ( ♯ ‘ ( 𝐹𝑇 ) ) = ( ♯ ‘ 𝑇 ) )
35 33 34 syl ( ( 𝐹 : 𝑉1-1𝑊𝑇𝑉𝑇 ∈ V ) → ( ♯ ‘ ( 𝐹𝑇 ) ) = ( ♯ ‘ 𝑇 ) )
36 35 eqcomd ( ( 𝐹 : 𝑉1-1𝑊𝑇𝑉𝑇 ∈ V ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹𝑇 ) ) )
37 21 27 32 36 syl3anc ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ 𝑇 ) = ( ♯ ‘ ( 𝐹𝑇 ) ) )
38 simprrr ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ 𝑇 ) = 3 )
39 37 38 eqtr3d ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ♯ ‘ ( 𝐹𝑇 ) ) = 3 )
40 10 20 39 3jca ( ( 𝐹 : 𝑉1-1𝑊 ∧ ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) ) → ( ( ( 𝐹𝑎 ) ∈ 𝑊 ∧ ( 𝐹𝑏 ) ∈ 𝑊 ∧ ( 𝐹𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹𝑇 ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) , ( 𝐹𝑐 ) } ∧ ( ♯ ‘ ( 𝐹𝑇 ) ) = 3 ) )
41 40 ex ( 𝐹 : 𝑉1-1𝑊 → ( ( ( 𝑎𝑉𝑏𝑉𝑐𝑉 ) ∧ ( 𝑇 = { 𝑎 , 𝑏 , 𝑐 } ∧ ( ♯ ‘ 𝑇 ) = 3 ) ) → ( ( ( 𝐹𝑎 ) ∈ 𝑊 ∧ ( 𝐹𝑏 ) ∈ 𝑊 ∧ ( 𝐹𝑐 ) ∈ 𝑊 ) ∧ ( 𝐹𝑇 ) = { ( 𝐹𝑎 ) , ( 𝐹𝑏 ) , ( 𝐹𝑐 ) } ∧ ( ♯ ‘ ( 𝐹𝑇 ) ) = 3 ) ) )