Metamath Proof Explorer


Theorem gruel

Description: Any element of an element of a Grothendieck universe is also an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruel ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴 ) → 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 gruelss ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝐴𝑈 )
2 1 sseld ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐵𝐴𝐵𝑈 ) )
3 2 3impia ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴 ) → 𝐵𝑈 )