Metamath Proof Explorer
Description: Any element of an element of a Grothendieck universe is also an element
of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)
|
|
Ref |
Expression |
|
Assertion |
gruel |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝑈 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gruelss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ⊆ 𝑈 ) |
2 |
1
|
sseld |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝑈 ) ) |
3 |
2
|
3impia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝑈 ) |