Metamath Proof Explorer


Theorem gruelss

Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruelss ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 grutr ( 𝑈 ∈ Univ → Tr 𝑈 )
2 trss ( Tr 𝑈 → ( 𝐴𝑈𝐴𝑈 ) )
3 2 imp ( ( Tr 𝑈𝐴𝑈 ) → 𝐴𝑈 )
4 1 3 sylan ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝐴𝑈 )