Metamath Proof Explorer


Theorem gruiin

Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruiin ( ( 𝑈 ∈ Univ ∧ ∃ 𝑥𝐴 𝐵𝑈 ) → 𝑥𝐴 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 nfv 𝑥 𝑈 ∈ Univ
2 nfii1 𝑥 𝑥𝐴 𝐵
3 2 nfel1 𝑥 𝑥𝐴 𝐵𝑈
4 iinss2 ( 𝑥𝐴 𝑥𝐴 𝐵𝐵 )
5 gruss ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈 𝑥𝐴 𝐵𝐵 ) → 𝑥𝐴 𝐵𝑈 )
6 4 5 syl3an3 ( ( 𝑈 ∈ Univ ∧ 𝐵𝑈𝑥𝐴 ) → 𝑥𝐴 𝐵𝑈 )
7 6 3exp ( 𝑈 ∈ Univ → ( 𝐵𝑈 → ( 𝑥𝐴 𝑥𝐴 𝐵𝑈 ) ) )
8 7 com23 ( 𝑈 ∈ Univ → ( 𝑥𝐴 → ( 𝐵𝑈 𝑥𝐴 𝐵𝑈 ) ) )
9 1 3 8 rexlimd ( 𝑈 ∈ Univ → ( ∃ 𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈 ) )
10 9 imp ( ( 𝑈 ∈ Univ ∧ ∃ 𝑥𝐴 𝐵𝑈 ) → 𝑥𝐴 𝐵𝑈 )