Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → Fun 𝐹 ) |
2 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
3 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
4 |
|
resres |
⊢ ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐴 ) = ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) |
5 |
|
resdm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
6 |
5
|
reseq1d |
⊢ ( Rel 𝐹 → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐴 ) = ( 𝐹 ↾ 𝐴 ) ) |
7 |
4 6
|
eqtr3id |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) = ( 𝐹 ↾ 𝐴 ) ) |
8 |
7
|
rneqd |
⊢ ( Rel 𝐹 → ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) = ran ( 𝐹 ↾ 𝐴 ) ) |
9 |
3 8
|
eqtr4id |
⊢ ( Rel 𝐹 → ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) ) |
10 |
1 2 9
|
3syl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) ) |
11 |
|
simpl1 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → 𝑈 ∈ Univ ) |
12 |
|
simpr |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ∈ 𝑈 ) |
13 |
|
inss2 |
⊢ ( dom 𝐹 ∩ 𝐴 ) ⊆ 𝐴 |
14 |
13
|
a1i |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( dom 𝐹 ∩ 𝐴 ) ⊆ 𝐴 ) |
15 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ( dom 𝐹 ∩ 𝐴 ) ⊆ 𝐴 ) → ( dom 𝐹 ∩ 𝐴 ) ∈ 𝑈 ) |
16 |
11 12 14 15
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( dom 𝐹 ∩ 𝐴 ) ∈ 𝑈 ) |
17 |
|
funforn |
⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 –onto→ ran 𝐹 ) |
18 |
|
fof |
⊢ ( 𝐹 : dom 𝐹 –onto→ ran 𝐹 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
19 |
17 18
|
sylbi |
⊢ ( Fun 𝐹 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
20 |
|
inss1 |
⊢ ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 |
21 |
|
fssres |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 ∧ ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ran 𝐹 ) |
22 |
19 20 21
|
sylancl |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ran 𝐹 ) |
23 |
|
ffn |
⊢ ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ran 𝐹 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) Fn ( dom 𝐹 ∩ 𝐴 ) ) |
24 |
1 22 23
|
3syl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) Fn ( dom 𝐹 ∩ 𝐴 ) ) |
25 |
|
simpl3 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) |
26 |
10 25
|
eqsstrrd |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) ⊆ 𝑈 ) |
27 |
|
df-f |
⊢ ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ 𝑈 ↔ ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) Fn ( dom 𝐹 ∩ 𝐴 ) ∧ ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) ⊆ 𝑈 ) ) |
28 |
24 26 27
|
sylanbrc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ 𝑈 ) |
29 |
|
grurn |
⊢ ( ( 𝑈 ∈ Univ ∧ ( dom 𝐹 ∩ 𝐴 ) ∈ 𝑈 ∧ ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ 𝑈 ) → ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) ∈ 𝑈 ) |
30 |
11 16 28 29
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ran ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) ∈ 𝑈 ) |
31 |
10 30
|
eqeltrd |
⊢ ( ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 “ 𝐴 ) ∈ 𝑈 ) |
32 |
31
|
ex |
⊢ ( ( 𝑈 ∈ Univ ∧ Fun 𝐹 ∧ ( 𝐹 “ 𝐴 ) ⊆ 𝑈 ) → ( 𝐴 ∈ 𝑈 → ( 𝐹 “ 𝐴 ) ∈ 𝑈 ) ) |