Step |
Hyp |
Ref |
Expression |
1 |
|
gruina.1 |
⊢ 𝐴 = ( 𝑈 ∩ On ) |
2 |
|
n0 |
⊢ ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑈 ) |
3 |
|
0ss |
⊢ ∅ ⊆ 𝑥 |
4 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ ∅ ⊆ 𝑥 ) → ∅ ∈ 𝑈 ) |
5 |
3 4
|
mp3an3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ∅ ∈ 𝑈 ) |
6 |
|
0elon |
⊢ ∅ ∈ On |
7 |
|
elin |
⊢ ( ∅ ∈ ( 𝑈 ∩ On ) ↔ ( ∅ ∈ 𝑈 ∧ ∅ ∈ On ) ) |
8 |
5 6 7
|
sylanblrc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ∅ ∈ ( 𝑈 ∩ On ) ) |
9 |
8 1
|
eleqtrrdi |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ∅ ∈ 𝐴 ) |
10 |
9
|
ne0d |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝐴 ≠ ∅ ) |
11 |
10
|
expcom |
⊢ ( 𝑥 ∈ 𝑈 → ( 𝑈 ∈ Univ → 𝐴 ≠ ∅ ) ) |
12 |
11
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝑈 → ( 𝑈 ∈ Univ → 𝐴 ≠ ∅ ) ) |
13 |
2 12
|
sylbi |
⊢ ( 𝑈 ≠ ∅ → ( 𝑈 ∈ Univ → 𝐴 ≠ ∅ ) ) |
14 |
13
|
impcom |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
15 |
|
grutr |
⊢ ( 𝑈 ∈ Univ → Tr 𝑈 ) |
16 |
|
tron |
⊢ Tr On |
17 |
|
trin |
⊢ ( ( Tr 𝑈 ∧ Tr On ) → Tr ( 𝑈 ∩ On ) ) |
18 |
15 16 17
|
sylancl |
⊢ ( 𝑈 ∈ Univ → Tr ( 𝑈 ∩ On ) ) |
19 |
|
inss2 |
⊢ ( 𝑈 ∩ On ) ⊆ On |
20 |
|
epweon |
⊢ E We On |
21 |
|
wess |
⊢ ( ( 𝑈 ∩ On ) ⊆ On → ( E We On → E We ( 𝑈 ∩ On ) ) ) |
22 |
19 20 21
|
mp2 |
⊢ E We ( 𝑈 ∩ On ) |
23 |
|
df-ord |
⊢ ( Ord ( 𝑈 ∩ On ) ↔ ( Tr ( 𝑈 ∩ On ) ∧ E We ( 𝑈 ∩ On ) ) ) |
24 |
18 22 23
|
sylanblrc |
⊢ ( 𝑈 ∈ Univ → Ord ( 𝑈 ∩ On ) ) |
25 |
|
inex1g |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ∩ On ) ∈ V ) |
26 |
|
elon2 |
⊢ ( ( 𝑈 ∩ On ) ∈ On ↔ ( Ord ( 𝑈 ∩ On ) ∧ ( 𝑈 ∩ On ) ∈ V ) ) |
27 |
24 25 26
|
sylanbrc |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ∩ On ) ∈ On ) |
28 |
1 27
|
eqeltrid |
⊢ ( 𝑈 ∈ Univ → 𝐴 ∈ On ) |
29 |
28
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝐴 ∈ On ) |
30 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
31 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
32 |
30 31
|
syl |
⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴 ) |
33 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝑈 ∩ On ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) ) |
34 |
33
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) → 𝐴 ∈ ( 𝑈 ∩ On ) ) |
35 |
34 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) → 𝐴 ∈ 𝐴 ) |
36 |
35
|
expcom |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ 𝑈 → 𝐴 ∈ 𝐴 ) ) |
37 |
32 36
|
mtod |
⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ 𝑈 ) |
38 |
29 37
|
syl |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ¬ 𝐴 ∈ 𝑈 ) |
39 |
|
inss1 |
⊢ ( 𝑈 ∩ On ) ⊆ 𝑈 |
40 |
1 39
|
eqsstri |
⊢ 𝐴 ⊆ 𝑈 |
41 |
40
|
sseli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈 ) |
42 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
43 |
42
|
canth2 |
⊢ 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 |
44 |
42
|
pwex |
⊢ 𝒫 𝒫 𝑥 ∈ V |
45 |
44
|
cardid |
⊢ ( card ‘ 𝒫 𝒫 𝑥 ) ≈ 𝒫 𝒫 𝑥 |
46 |
45
|
ensymi |
⊢ 𝒫 𝒫 𝑥 ≈ ( card ‘ 𝒫 𝒫 𝑥 ) |
47 |
28
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝐴 ∈ On ) |
48 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝑥 ∈ 𝑈 ) |
49 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝑥 ∈ 𝑈 ) → 𝒫 𝒫 𝑥 ∈ 𝑈 ) |
50 |
48 49
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝒫 𝑥 ∈ 𝑈 ) |
51 |
28
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥 ∈ 𝑈 ) → 𝐴 ∈ On ) |
52 |
|
endom |
⊢ ( ( card ‘ 𝒫 𝒫 𝑥 ) ≈ 𝒫 𝒫 𝑥 → ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝒫 𝒫 𝑥 ) |
53 |
45 52
|
ax-mp |
⊢ ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝒫 𝒫 𝑥 |
54 |
|
cardon |
⊢ ( card ‘ 𝒫 𝒫 𝑥 ) ∈ On |
55 |
|
grudomon |
⊢ ( ( 𝑈 ∈ Univ ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ∈ On ∧ ( 𝒫 𝒫 𝑥 ∈ 𝑈 ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝒫 𝒫 𝑥 ) ) → ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝑈 ) |
56 |
54 55
|
mp3an2 |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝒫 𝒫 𝑥 ∈ 𝑈 ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝒫 𝒫 𝑥 ) ) → ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝑈 ) |
57 |
53 56
|
mpanr2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥 ∈ 𝑈 ) → ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝑈 ) |
58 |
|
elin |
⊢ ( ( card ‘ 𝒫 𝒫 𝑥 ) ∈ ( 𝑈 ∩ On ) ↔ ( ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝑈 ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ∈ On ) ) |
59 |
58
|
biimpri |
⊢ ( ( ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝑈 ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ∈ On ) → ( card ‘ 𝒫 𝒫 𝑥 ) ∈ ( 𝑈 ∩ On ) ) |
60 |
59 1
|
eleqtrrdi |
⊢ ( ( ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝑈 ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ∈ On ) → ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝐴 ) |
61 |
57 54 60
|
sylancl |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥 ∈ 𝑈 ) → ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝐴 ) |
62 |
|
onelss |
⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝒫 𝒫 𝑥 ) ∈ 𝐴 → ( card ‘ 𝒫 𝒫 𝑥 ) ⊆ 𝐴 ) ) |
63 |
51 61 62
|
sylc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 𝑥 ∈ 𝑈 ) → ( card ‘ 𝒫 𝒫 𝑥 ) ⊆ 𝐴 ) |
64 |
50 63
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( card ‘ 𝒫 𝒫 𝑥 ) ⊆ 𝐴 ) |
65 |
|
ssdomg |
⊢ ( 𝐴 ∈ On → ( ( card ‘ 𝒫 𝒫 𝑥 ) ⊆ 𝐴 → ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝐴 ) ) |
66 |
47 64 65
|
sylc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝐴 ) |
67 |
|
endomtr |
⊢ ( ( 𝒫 𝒫 𝑥 ≈ ( card ‘ 𝒫 𝒫 𝑥 ) ∧ ( card ‘ 𝒫 𝒫 𝑥 ) ≼ 𝐴 ) → 𝒫 𝒫 𝑥 ≼ 𝐴 ) |
68 |
46 66 67
|
sylancr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝒫 𝑥 ≼ 𝐴 ) |
69 |
|
sdomdomtr |
⊢ ( ( 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥 ≼ 𝐴 ) → 𝒫 𝑥 ≺ 𝐴 ) |
70 |
43 68 69
|
sylancr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝑥 ≺ 𝐴 ) |
71 |
41 70
|
sylan2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → 𝒫 𝑥 ≺ 𝐴 ) |
72 |
71
|
ralrimiva |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) |
73 |
|
inawinalem |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
74 |
28 72 73
|
sylc |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) |
75 |
74
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) |
76 |
|
winainflem |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ω ⊆ 𝐴 ) |
77 |
14 29 75 76
|
syl3anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ω ⊆ 𝐴 ) |
78 |
|
vex |
⊢ 𝑥 ∈ V |
79 |
78
|
canth2 |
⊢ 𝑥 ≺ 𝒫 𝑥 |
80 |
|
sdomtr |
⊢ ( ( 𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
81 |
79 71 80
|
sylancr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ 𝐴 ) |
82 |
81
|
ralrimiva |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) |
83 |
|
iscard |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≺ 𝐴 ) ) |
84 |
28 82 83
|
sylanbrc |
⊢ ( 𝑈 ∈ Univ → ( card ‘ 𝐴 ) = 𝐴 ) |
85 |
|
cardlim |
⊢ ( ω ⊆ ( card ‘ 𝐴 ) ↔ Lim ( card ‘ 𝐴 ) ) |
86 |
|
sseq2 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ ( card ‘ 𝐴 ) ↔ ω ⊆ 𝐴 ) ) |
87 |
|
limeq |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( Lim ( card ‘ 𝐴 ) ↔ Lim 𝐴 ) ) |
88 |
86 87
|
bibi12d |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ω ⊆ ( card ‘ 𝐴 ) ↔ Lim ( card ‘ 𝐴 ) ) ↔ ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) ) |
89 |
85 88
|
mpbii |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
90 |
84 89
|
syl |
⊢ ( 𝑈 ∈ Univ → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
91 |
90
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
92 |
77 91
|
mpbid |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → Lim 𝐴 ) |
93 |
|
cflm |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
94 |
29 92 93
|
syl2anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
95 |
|
cardon |
⊢ ( card ‘ 𝑦 ) ∈ On |
96 |
|
eleq1 |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑥 ∈ On ↔ ( card ‘ 𝑦 ) ∈ On ) ) |
97 |
95 96
|
mpbiri |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
98 |
97
|
adantr |
⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → 𝑥 ∈ On ) |
99 |
98
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → 𝑥 ∈ On ) |
100 |
99
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ On |
101 |
|
fvex |
⊢ ( cf ‘ 𝐴 ) ∈ V |
102 |
94 101
|
eqeltrrdi |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∈ V ) |
103 |
|
intex |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ≠ ∅ ↔ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∈ V ) |
104 |
102 103
|
sylibr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ≠ ∅ ) |
105 |
|
onint |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ⊆ On ∧ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
106 |
100 104 105
|
sylancr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
107 |
94 106
|
eqeltrd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ) |
108 |
|
eqeq1 |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( 𝑥 = ( card ‘ 𝑦 ) ↔ ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) ) |
109 |
108
|
anbi1d |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ↔ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) ) |
110 |
109
|
exbidv |
⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ↔ ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) ) |
111 |
101 110
|
elab |
⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) } ↔ ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) |
112 |
107 111
|
sylib |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ) |
113 |
|
simp2rr |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → 𝐴 = ∪ 𝑦 ) |
114 |
|
simp1l |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → 𝑈 ∈ Univ ) |
115 |
|
simp2rl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
116 |
115 40
|
sstrdi |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → 𝑦 ⊆ 𝑈 ) |
117 |
40
|
sseli |
⊢ ( ( cf ‘ 𝐴 ) ∈ 𝐴 → ( cf ‘ 𝐴 ) ∈ 𝑈 ) |
118 |
117
|
3ad2ant3 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → ( cf ‘ 𝐴 ) ∈ 𝑈 ) |
119 |
|
simp2l |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ) |
120 |
|
vex |
⊢ 𝑦 ∈ V |
121 |
120
|
cardid |
⊢ ( card ‘ 𝑦 ) ≈ 𝑦 |
122 |
119 121
|
eqbrtrdi |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → ( cf ‘ 𝐴 ) ≈ 𝑦 ) |
123 |
|
gruen |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑦 ⊆ 𝑈 ∧ ( ( cf ‘ 𝐴 ) ∈ 𝑈 ∧ ( cf ‘ 𝐴 ) ≈ 𝑦 ) ) → 𝑦 ∈ 𝑈 ) |
124 |
114 116 118 122 123
|
syl112anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → 𝑦 ∈ 𝑈 ) |
125 |
|
gruuni |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑦 ∈ 𝑈 ) → ∪ 𝑦 ∈ 𝑈 ) |
126 |
114 124 125
|
syl2anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝑈 ) |
127 |
113 126
|
eqeltrd |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) ∧ ( cf ‘ 𝐴 ) ∈ 𝐴 ) → 𝐴 ∈ 𝑈 ) |
128 |
127
|
3exp |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → ( ( cf ‘ 𝐴 ) ∈ 𝐴 → 𝐴 ∈ 𝑈 ) ) ) |
129 |
128
|
exlimdv |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( ∃ 𝑦 ( ( cf ‘ 𝐴 ) = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦 ) ) → ( ( cf ‘ 𝐴 ) ∈ 𝐴 → 𝐴 ∈ 𝑈 ) ) ) |
130 |
112 129
|
mpd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( ( cf ‘ 𝐴 ) ∈ 𝐴 → 𝐴 ∈ 𝑈 ) ) |
131 |
38 130
|
mtod |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ¬ ( cf ‘ 𝐴 ) ∈ 𝐴 ) |
132 |
|
cfon |
⊢ ( cf ‘ 𝐴 ) ∈ On |
133 |
|
cfle |
⊢ ( cf ‘ 𝐴 ) ⊆ 𝐴 |
134 |
|
onsseleq |
⊢ ( ( ( cf ‘ 𝐴 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( cf ‘ 𝐴 ) ⊆ 𝐴 ↔ ( ( cf ‘ 𝐴 ) ∈ 𝐴 ∨ ( cf ‘ 𝐴 ) = 𝐴 ) ) ) |
135 |
133 134
|
mpbii |
⊢ ( ( ( cf ‘ 𝐴 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( cf ‘ 𝐴 ) ∈ 𝐴 ∨ ( cf ‘ 𝐴 ) = 𝐴 ) ) |
136 |
132 135
|
mpan |
⊢ ( 𝐴 ∈ On → ( ( cf ‘ 𝐴 ) ∈ 𝐴 ∨ ( cf ‘ 𝐴 ) = 𝐴 ) ) |
137 |
136
|
ord |
⊢ ( 𝐴 ∈ On → ( ¬ ( cf ‘ 𝐴 ) ∈ 𝐴 → ( cf ‘ 𝐴 ) = 𝐴 ) ) |
138 |
29 131 137
|
sylc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( cf ‘ 𝐴 ) = 𝐴 ) |
139 |
72
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) |
140 |
|
elina |
⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) ) |
141 |
14 138 139 140
|
syl3anbrc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝐴 ∈ Inacc ) |