Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
1
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
3 |
1
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑈 ) |
4 |
|
df-f |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑈 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝑈 ) ) |
5 |
2 3 4
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑈 ) |
6 |
|
gruurn |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑈 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑈 ) |
7 |
6
|
3expia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑈 → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑈 ) ) |
8 |
5 7
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑈 ) ) |
9 |
|
dfiun3g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
10 |
9
|
eleq1d |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ↔ ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑈 ) ) |
11 |
8 10
|
sylibrd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) ) |
12 |
11
|
com12 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) ) |
13 |
12
|
3impia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑈 ) |