Metamath Proof Explorer


Theorem gruiun

Description: If B ( x ) is a family of elements of U and the index set A is an element of U , then the indexed union U_ x e. A B is also an element of U , where U is a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruiun ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → 𝑥𝐴 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
2 1 fnmpt ( ∀ 𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )
3 1 rnmptss ( ∀ 𝑥𝐴 𝐵𝑈 → ran ( 𝑥𝐴𝐵 ) ⊆ 𝑈 )
4 df-f ( ( 𝑥𝐴𝐵 ) : 𝐴𝑈 ↔ ( ( 𝑥𝐴𝐵 ) Fn 𝐴 ∧ ran ( 𝑥𝐴𝐵 ) ⊆ 𝑈 ) )
5 2 3 4 sylanbrc ( ∀ 𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴𝐵 ) : 𝐴𝑈 )
6 gruurn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ( 𝑥𝐴𝐵 ) : 𝐴𝑈 ) → ran ( 𝑥𝐴𝐵 ) ∈ 𝑈 )
7 6 3expia ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( ( 𝑥𝐴𝐵 ) : 𝐴𝑈 ran ( 𝑥𝐴𝐵 ) ∈ 𝑈 ) )
8 5 7 syl5com ( ∀ 𝑥𝐴 𝐵𝑈 → ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ran ( 𝑥𝐴𝐵 ) ∈ 𝑈 ) )
9 dfiun3g ( ∀ 𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵 = ran ( 𝑥𝐴𝐵 ) )
10 9 eleq1d ( ∀ 𝑥𝐴 𝐵𝑈 → ( 𝑥𝐴 𝐵𝑈 ran ( 𝑥𝐴𝐵 ) ∈ 𝑈 ) )
11 8 10 sylibrd ( ∀ 𝑥𝐴 𝐵𝑈 → ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝑥𝐴 𝐵𝑈 ) )
12 11 com12 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( ∀ 𝑥𝐴 𝐵𝑈 𝑥𝐴 𝐵𝑈 ) )
13 12 3impia ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → 𝑥𝐴 𝐵𝑈 )