Metamath Proof Explorer


Theorem gruixp

Description: A Grothendieck universe contains indexed cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruixp ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → X 𝑥𝐴 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → 𝑈 ∈ Univ )
2 gruiun ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → 𝑥𝐴 𝐵𝑈 )
3 simp2 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → 𝐴𝑈 )
4 grumap ( ( 𝑈 ∈ Univ ∧ 𝑥𝐴 𝐵𝑈𝐴𝑈 ) → ( 𝑥𝐴 𝐵m 𝐴 ) ∈ 𝑈 )
5 1 2 3 4 syl3anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → ( 𝑥𝐴 𝐵m 𝐴 ) ∈ 𝑈 )
6 ixpssmapg ( ∀ 𝑥𝐴 𝐵𝑈X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )
7 6 3ad2ant3 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )
8 gruss ( ( 𝑈 ∈ Univ ∧ ( 𝑥𝐴 𝐵m 𝐴 ) ∈ 𝑈X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) ) → X 𝑥𝐴 𝐵𝑈 )
9 1 5 7 8 syl3anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝐵𝑈 ) → X 𝑥𝐴 𝐵𝑈 )