Step |
Hyp |
Ref |
Expression |
1 |
|
elgrug |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) |
3 |
2
|
simprd |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) |
4 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝑥 , 𝑦 } = { 𝑥 , 𝐵 } ) |
5 |
4
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝑥 , 𝑦 } ∈ 𝑈 ↔ { 𝑥 , 𝐵 } ∈ 𝑈 ) ) |
6 |
5
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 → ( 𝐵 ∈ 𝑈 → { 𝑥 , 𝐵 } ∈ 𝑈 ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) → ( 𝐵 ∈ 𝑈 → { 𝑥 , 𝐵 } ∈ 𝑈 ) ) |
8 |
7
|
com12 |
⊢ ( 𝐵 ∈ 𝑈 → ( ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) → { 𝑥 , 𝐵 } ∈ 𝑈 ) ) |
9 |
8
|
ralimdv |
⊢ ( 𝐵 ∈ 𝑈 → ( ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 { 𝑥 , 𝐵 } ∈ 𝑈 ) ) |
10 |
3 9
|
syl5com |
⊢ ( 𝑈 ∈ Univ → ( 𝐵 ∈ 𝑈 → ∀ 𝑥 ∈ 𝑈 { 𝑥 , 𝐵 } ∈ 𝑈 ) ) |
11 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝐵 } ∈ 𝑈 ↔ { 𝐴 , 𝐵 } ∈ 𝑈 ) ) |
13 |
12
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑈 { 𝑥 , 𝐵 } ∈ 𝑈 → ( 𝐴 ∈ 𝑈 → { 𝐴 , 𝐵 } ∈ 𝑈 ) ) |
14 |
10 13
|
syl6 |
⊢ ( 𝑈 ∈ Univ → ( 𝐵 ∈ 𝑈 → ( 𝐴 ∈ 𝑈 → { 𝐴 , 𝐵 } ∈ 𝑈 ) ) ) |
15 |
14
|
com23 |
⊢ ( 𝑈 ∈ Univ → ( 𝐴 ∈ 𝑈 → ( 𝐵 ∈ 𝑈 → { 𝐴 , 𝐵 } ∈ 𝑈 ) ) ) |
16 |
15
|
3imp |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 ) |