Metamath Proof Explorer


Theorem grupr

Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grupr ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 elgrug ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) ) ) )
2 1 ibi ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) ) )
3 2 simprd ( 𝑈 ∈ Univ → ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) )
4 preq2 ( 𝑦 = 𝐵 → { 𝑥 , 𝑦 } = { 𝑥 , 𝐵 } )
5 4 eleq1d ( 𝑦 = 𝐵 → ( { 𝑥 , 𝑦 } ∈ 𝑈 ↔ { 𝑥 , 𝐵 } ∈ 𝑈 ) )
6 5 rspccv ( ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 → ( 𝐵𝑈 → { 𝑥 , 𝐵 } ∈ 𝑈 ) )
7 6 3ad2ant2 ( ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) → ( 𝐵𝑈 → { 𝑥 , 𝐵 } ∈ 𝑈 ) )
8 7 com12 ( 𝐵𝑈 → ( ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) → { 𝑥 , 𝐵 } ∈ 𝑈 ) )
9 8 ralimdv ( 𝐵𝑈 → ( ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) → ∀ 𝑥𝑈 { 𝑥 , 𝐵 } ∈ 𝑈 ) )
10 3 9 syl5com ( 𝑈 ∈ Univ → ( 𝐵𝑈 → ∀ 𝑥𝑈 { 𝑥 , 𝐵 } ∈ 𝑈 ) )
11 preq1 ( 𝑥 = 𝐴 → { 𝑥 , 𝐵 } = { 𝐴 , 𝐵 } )
12 11 eleq1d ( 𝑥 = 𝐴 → ( { 𝑥 , 𝐵 } ∈ 𝑈 ↔ { 𝐴 , 𝐵 } ∈ 𝑈 ) )
13 12 rspccv ( ∀ 𝑥𝑈 { 𝑥 , 𝐵 } ∈ 𝑈 → ( 𝐴𝑈 → { 𝐴 , 𝐵 } ∈ 𝑈 ) )
14 10 13 syl6 ( 𝑈 ∈ Univ → ( 𝐵𝑈 → ( 𝐴𝑈 → { 𝐴 , 𝐵 } ∈ 𝑈 ) ) )
15 14 com23 ( 𝑈 ∈ Univ → ( 𝐴𝑈 → ( 𝐵𝑈 → { 𝐴 , 𝐵 } ∈ 𝑈 ) ) )
16 15 3imp ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 )