Metamath Proof Explorer


Theorem grupw

Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grupw ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝒫 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 elgrug ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑦𝑈 ( 𝒫 𝑦𝑈 ∧ ∀ 𝑥𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈m 𝑦 ) ran 𝑥𝑈 ) ) ) )
2 1 ibi ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑦𝑈 ( 𝒫 𝑦𝑈 ∧ ∀ 𝑥𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈m 𝑦 ) ran 𝑥𝑈 ) ) )
3 2 simprd ( 𝑈 ∈ Univ → ∀ 𝑦𝑈 ( 𝒫 𝑦𝑈 ∧ ∀ 𝑥𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈m 𝑦 ) ran 𝑥𝑈 ) )
4 simp1 ( ( 𝒫 𝑦𝑈 ∧ ∀ 𝑥𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈m 𝑦 ) ran 𝑥𝑈 ) → 𝒫 𝑦𝑈 )
5 4 ralimi ( ∀ 𝑦𝑈 ( 𝒫 𝑦𝑈 ∧ ∀ 𝑥𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈m 𝑦 ) ran 𝑥𝑈 ) → ∀ 𝑦𝑈 𝒫 𝑦𝑈 )
6 pweq ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 )
7 6 eleq1d ( 𝑦 = 𝐴 → ( 𝒫 𝑦𝑈 ↔ 𝒫 𝐴𝑈 ) )
8 7 rspccv ( ∀ 𝑦𝑈 𝒫 𝑦𝑈 → ( 𝐴𝑈 → 𝒫 𝐴𝑈 ) )
9 3 5 8 3syl ( 𝑈 ∈ Univ → ( 𝐴𝑈 → 𝒫 𝐴𝑈 ) )
10 9 imp ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝒫 𝐴𝑈 )