Step |
Hyp |
Ref |
Expression |
1 |
|
elgrug |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 ( 𝒫 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈 ↑m 𝑦 ) ∪ ran 𝑥 ∈ 𝑈 ) ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 ( 𝒫 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈 ↑m 𝑦 ) ∪ ran 𝑥 ∈ 𝑈 ) ) ) |
3 |
2
|
simprd |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑦 ∈ 𝑈 ( 𝒫 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈 ↑m 𝑦 ) ∪ ran 𝑥 ∈ 𝑈 ) ) |
4 |
|
simp1 |
⊢ ( ( 𝒫 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈 ↑m 𝑦 ) ∪ ran 𝑥 ∈ 𝑈 ) → 𝒫 𝑦 ∈ 𝑈 ) |
5 |
4
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑈 ( 𝒫 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 { 𝑦 , 𝑥 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ ( 𝑈 ↑m 𝑦 ) ∪ ran 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 ) |
6 |
|
pweq |
⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) |
7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( 𝒫 𝑦 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈 ) ) |
8 |
7
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑈 𝒫 𝑦 ∈ 𝑈 → ( 𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈 ) ) |
9 |
3 5 8
|
3syl |
⊢ ( 𝑈 ∈ Univ → ( 𝐴 ∈ 𝑈 → 𝒫 𝐴 ∈ 𝑈 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝒫 𝐴 ∈ 𝑈 ) |