Step |
Hyp |
Ref |
Expression |
1 |
|
gruina.1 |
⊢ 𝐴 = ( 𝑈 ∩ On ) |
2 |
|
inss1 |
⊢ ( 𝑈 ∩ On ) ⊆ 𝑈 |
3 |
1 2
|
eqsstri |
⊢ 𝐴 ⊆ 𝑈 |
4 |
|
sseq2 |
⊢ ( 𝑈 = ∅ → ( 𝐴 ⊆ 𝑈 ↔ 𝐴 ⊆ ∅ ) ) |
5 |
3 4
|
mpbii |
⊢ ( 𝑈 = ∅ → 𝐴 ⊆ ∅ ) |
6 |
|
ss0 |
⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) |
7 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ( 𝑅1 ‘ ∅ ) ) |
8 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
9 |
7 8
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
10 |
|
0ss |
⊢ ∅ ⊆ 𝑈 |
11 |
9 10
|
eqsstrdi |
⊢ ( 𝐴 = ∅ → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) |
12 |
5 6 11
|
3syl |
⊢ ( 𝑈 = ∅ → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) |
13 |
12
|
a1i |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 = ∅ → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) ) |
14 |
1
|
gruina |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝐴 ∈ Inacc ) |
15 |
|
inawina |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |
16 |
|
winaon |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) |
17 |
|
winalim |
⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |
18 |
|
r1lim |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
20 |
14 15 19
|
3syl |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
21 |
|
inss2 |
⊢ ( 𝑈 ∩ On ) ⊆ On |
22 |
1 21
|
eqsstri |
⊢ 𝐴 ⊆ On |
23 |
22
|
sseli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) |
24 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
26 |
25 8
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ∅ ) |
27 |
26
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ↔ ( ∅ ∈ 𝐴 → ∅ ∈ 𝑈 ) ) ) |
29 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
32 |
29 31
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) ) |
33 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) |
36 |
33 35
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ↔ ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) |
37 |
3
|
sseli |
⊢ ( ∅ ∈ 𝐴 → ∅ ∈ 𝑈 ) |
38 |
37
|
a1i |
⊢ ( 𝑈 ∈ Univ → ( ∅ ∈ 𝐴 → ∅ ∈ 𝑈 ) ) |
39 |
|
simpr |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → suc 𝑦 ∈ 𝐴 ) |
40 |
|
elelsuc |
⊢ ( suc 𝑦 ∈ 𝐴 → suc 𝑦 ∈ suc 𝐴 ) |
41 |
3
|
sseli |
⊢ ( suc 𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝑈 ) |
42 |
41
|
ne0d |
⊢ ( suc 𝑦 ∈ 𝐴 → 𝑈 ≠ ∅ ) |
43 |
14 15 16
|
3syl |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝐴 ∈ On ) |
44 |
42 43
|
sylan2 |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → 𝐴 ∈ On ) |
45 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
46 |
|
ordsucelsuc |
⊢ ( Ord 𝐴 → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ suc 𝐴 ) ) |
47 |
44 45 46
|
3syl |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ suc 𝐴 ) ) |
48 |
40 47
|
syl5ibr |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
49 |
39 48
|
mpd |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
50 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) |
51 |
50
|
ex |
⊢ ( 𝑈 ∈ Univ → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
53 |
|
r1suc |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
54 |
53
|
eleq1d |
⊢ ( 𝑦 ∈ On → ( ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ↔ 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
55 |
54
|
biimprcd |
⊢ ( 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) |
56 |
52 55
|
syl6 |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) |
57 |
49 56
|
embantd |
⊢ ( ( 𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) |
58 |
57
|
ex |
⊢ ( 𝑈 ∈ Univ → ( suc 𝑦 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) ) |
59 |
58
|
com23 |
⊢ ( 𝑈 ∈ Univ → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( suc 𝑦 ∈ 𝐴 → ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) ) |
60 |
59
|
com4r |
⊢ ( 𝑦 ∈ On → ( 𝑈 ∈ Univ → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) ) |
61 |
|
simpr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
62 |
3
|
sseli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈 ) |
63 |
62
|
ne0d |
⊢ ( 𝑥 ∈ 𝐴 → 𝑈 ≠ ∅ ) |
64 |
63 43
|
sylan2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ On ) |
65 |
|
ontr1 |
⊢ ( 𝐴 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
66 |
|
pm2.27 |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
67 |
65 66
|
syl6 |
⊢ ( 𝐴 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) ) |
68 |
67
|
expd |
⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) ) ) |
69 |
68
|
com3r |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ On → ( 𝑦 ∈ 𝑥 → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) ) ) |
70 |
61 64 69
|
sylc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑥 → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) ) |
71 |
70
|
imp |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
72 |
71
|
ralimdva |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
73 |
|
gruiun |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) |
74 |
73
|
3expia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
75 |
62 74
|
sylan2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
76 |
72 75
|
syld |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
77 |
|
vex |
⊢ 𝑥 ∈ V |
78 |
|
r1lim |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
79 |
77 78
|
mpan |
⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
80 |
79
|
eleq1d |
⊢ ( Lim 𝑥 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
81 |
80
|
biimprd |
⊢ ( Lim 𝑥 → ( ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) |
82 |
76 81
|
sylan9r |
⊢ ( ( Lim 𝑥 ∧ ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) |
83 |
82
|
exp32 |
⊢ ( Lim 𝑥 → ( 𝑈 ∈ Univ → ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) ) ) |
84 |
83
|
com34 |
⊢ ( Lim 𝑥 → ( 𝑈 ∈ Univ → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) ) ) |
85 |
28 32 36 38 60 84
|
tfinds2 |
⊢ ( 𝑥 ∈ On → ( 𝑈 ∈ Univ → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) ) |
86 |
85
|
com3r |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ On → ( 𝑈 ∈ Univ → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) ) |
87 |
23 86
|
mpd |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑈 ∈ Univ → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) |
88 |
87
|
impcom |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
89 |
|
gruelss |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ) |
90 |
88 89
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ) |
91 |
90
|
ralrimiva |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ) |
92 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ) |
93 |
91 92
|
sylibr |
⊢ ( 𝑈 ∈ Univ → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ) |
94 |
93
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ⊆ 𝑈 ) |
95 |
20 94
|
eqsstrd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) |
96 |
95
|
ex |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ≠ ∅ → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) ) |
97 |
13 96
|
pm2.61dne |
⊢ ( 𝑈 ∈ Univ → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) |