Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | grusn | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 } ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
2 | grupr | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 , 𝐴 } ∈ 𝑈 ) | |
3 | 2 | 3anidm23 | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 , 𝐴 } ∈ 𝑈 ) |
4 | 1 3 | eqeltrid | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → { 𝐴 } ∈ 𝑈 ) |