Metamath Proof Explorer


Theorem grusn

Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grusn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → { 𝐴 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
2 grupr ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐴𝑈 ) → { 𝐴 , 𝐴 } ∈ 𝑈 )
3 2 3anidm23 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → { 𝐴 , 𝐴 } ∈ 𝑈 )
4 1 3 eqeltrid ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → { 𝐴 } ∈ 𝑈 )