Metamath Proof Explorer


Theorem gruss

Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruss ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴 ) → 𝐵𝑈 )

Proof

Step Hyp Ref Expression
1 elpw2g ( 𝐴𝑈 → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
2 1 adantl ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
3 grupw ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝒫 𝐴𝑈 )
4 gruelss ( ( 𝑈 ∈ Univ ∧ 𝒫 𝐴𝑈 ) → 𝒫 𝐴𝑈 )
5 3 4 syldan ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝒫 𝐴𝑈 )
6 5 sseld ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐵 ∈ 𝒫 𝐴𝐵𝑈 ) )
7 2 6 sylbird ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐵𝐴𝐵𝑈 ) )
8 7 3impia ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝐴 ) → 𝐵𝑈 )