Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | gruss | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g | ⊢ ( 𝐴 ∈ 𝑈 → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
2 | 1 | adantl | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
3 | grupw | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝒫 𝐴 ∈ 𝑈 ) | |
4 | gruelss | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝐴 ∈ 𝑈 ) → 𝒫 𝐴 ⊆ 𝑈 ) | |
5 | 3 4 | syldan | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝒫 𝐴 ⊆ 𝑈 ) |
6 | 5 | sseld | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐵 ∈ 𝒫 𝐴 → 𝐵 ∈ 𝑈 ) ) |
7 | 2 6 | sylbird | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ 𝑈 ) ) |
8 | 7 | 3impia | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝑈 ) |