Step |
Hyp |
Ref |
Expression |
1 |
|
0tsk |
⊢ ∅ ∈ Tarski |
2 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ Tarski ↔ ∅ ∈ Tarski ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝑦 = ∅ → 𝑦 ∈ Tarski ) |
4 |
3
|
a1i |
⊢ ( 𝑦 ∈ Univ → ( 𝑦 = ∅ → 𝑦 ∈ Tarski ) ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
|
unir1 |
⊢ ∪ ( 𝑅1 “ On ) = V |
7 |
5 6
|
eleqtrri |
⊢ 𝑦 ∈ ∪ ( 𝑅1 “ On ) |
8 |
|
eqid |
⊢ ( 𝑦 ∩ On ) = ( 𝑦 ∩ On ) |
9 |
8
|
grur1 |
⊢ ( ( 𝑦 ∈ Univ ∧ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) → 𝑦 = ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ) |
10 |
7 9
|
mpan2 |
⊢ ( 𝑦 ∈ Univ → 𝑦 = ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → 𝑦 = ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ) |
12 |
8
|
gruina |
⊢ ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → ( 𝑦 ∩ On ) ∈ Inacc ) |
13 |
|
inatsk |
⊢ ( ( 𝑦 ∩ On ) ∈ Inacc → ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ∈ Tarski ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → ( 𝑅1 ‘ ( 𝑦 ∩ On ) ) ∈ Tarski ) |
15 |
11 14
|
eqeltrd |
⊢ ( ( 𝑦 ∈ Univ ∧ 𝑦 ≠ ∅ ) → 𝑦 ∈ Tarski ) |
16 |
15
|
ex |
⊢ ( 𝑦 ∈ Univ → ( 𝑦 ≠ ∅ → 𝑦 ∈ Tarski ) ) |
17 |
4 16
|
pm2.61dne |
⊢ ( 𝑦 ∈ Univ → 𝑦 ∈ Tarski ) |
18 |
|
grutr |
⊢ ( 𝑦 ∈ Univ → Tr 𝑦 ) |
19 |
17 18
|
jca |
⊢ ( 𝑦 ∈ Univ → ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) ) |
20 |
|
grutsk1 |
⊢ ( ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) → 𝑦 ∈ Univ ) |
21 |
19 20
|
impbii |
⊢ ( 𝑦 ∈ Univ ↔ ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) ) |
22 |
|
treq |
⊢ ( 𝑥 = 𝑦 → ( Tr 𝑥 ↔ Tr 𝑦 ) ) |
23 |
22
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ Tarski ∣ Tr 𝑥 } ↔ ( 𝑦 ∈ Tarski ∧ Tr 𝑦 ) ) |
24 |
21 23
|
bitr4i |
⊢ ( 𝑦 ∈ Univ ↔ 𝑦 ∈ { 𝑥 ∈ Tarski ∣ Tr 𝑥 } ) |
25 |
24
|
eqriv |
⊢ Univ = { 𝑥 ∈ Tarski ∣ Tr 𝑥 } |