Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → Tr 𝑇 ) |
2 |
|
tskpw |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
3 |
2
|
adantlr |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
4 |
|
tskpr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 ) |
6 |
5
|
ralrimiva |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) |
8 |
|
elmapg |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → ( 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ 𝑇 ) ) |
9 |
8
|
adantlr |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ 𝑇 ) ) |
10 |
|
tskurn |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 : 𝑥 ⟶ 𝑇 ) → ∪ ran 𝑦 ∈ 𝑇 ) |
11 |
10
|
3expia |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑦 : 𝑥 ⟶ 𝑇 → ∪ ran 𝑦 ∈ 𝑇 ) ) |
12 |
9 11
|
sylbid |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) → ∪ ran 𝑦 ∈ 𝑇 ) ) |
13 |
12
|
ralrimiv |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ∀ 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑇 ) |
14 |
3 7 13
|
3jca |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑇 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑇 ) ) |
16 |
|
elgrug |
⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Univ ↔ ( Tr 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑇 ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑇 ∈ Univ ↔ ( Tr 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 ( 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑇 ) ) ) ) |
18 |
1 15 17
|
mpbir2and |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → 𝑇 ∈ Univ ) |