Metamath Proof Explorer


Theorem grutsk1

Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni .) (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion grutsk1 ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → 𝑇 ∈ Univ )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → Tr 𝑇 )
2 tskpw ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → 𝒫 𝑥𝑇 )
3 2 adantlr ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → 𝒫 𝑥𝑇 )
4 tskpr ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 )
5 4 3expa ( ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) ∧ 𝑦𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 )
6 5 ralrimiva ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 )
7 6 adantlr ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 )
8 elmapg ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → ( 𝑦 ∈ ( 𝑇m 𝑥 ) ↔ 𝑦 : 𝑥𝑇 ) )
9 8 adantlr ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → ( 𝑦 ∈ ( 𝑇m 𝑥 ) ↔ 𝑦 : 𝑥𝑇 ) )
10 tskurn ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇𝑦 : 𝑥𝑇 ) → ran 𝑦𝑇 )
11 10 3expia ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → ( 𝑦 : 𝑥𝑇 ran 𝑦𝑇 ) )
12 9 11 sylbid ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → ( 𝑦 ∈ ( 𝑇m 𝑥 ) → ran 𝑦𝑇 ) )
13 12 ralrimiv ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → ∀ 𝑦 ∈ ( 𝑇m 𝑥 ) ran 𝑦𝑇 )
14 3 7 13 3jca ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → ( 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇m 𝑥 ) ran 𝑦𝑇 ) )
15 14 ralrimiva ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ∀ 𝑥𝑇 ( 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇m 𝑥 ) ran 𝑦𝑇 ) )
16 elgrug ( 𝑇 ∈ Tarski → ( 𝑇 ∈ Univ ↔ ( Tr 𝑇 ∧ ∀ 𝑥𝑇 ( 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇m 𝑥 ) ran 𝑦𝑇 ) ) ) )
17 16 adantr ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → ( 𝑇 ∈ Univ ↔ ( Tr 𝑇 ∧ ∀ 𝑥𝑇 ( 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ∧ ∀ 𝑦 ∈ ( 𝑇m 𝑥 ) ran 𝑦𝑇 ) ) ) )
18 1 15 17 mpbir2and ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) → 𝑇 ∈ Univ )